(2)

$$
\frac{\ln -297}{11^{2}-76}
$$

TREATISE

OF THE

Method of FLUXIONS

A N D

INFINITE SERIES,

With its Application to the Geometry of Curve Lines.

By sir ISAAC NEWTON, Kt.
Tranflated from the Latin Original not yet publifhed.

Defigned by the AUTHOR for the Ufe of LEARNERS.

Hac via infiftendum eft.

LONDON:
Printed for T.Woodman at Camden's Head in New Round Court in the Strand; and J. Millan next to Will's Coffee Houfe at the Entrance into Scotland-Yard. MDCCXXXVII.

$$
3
$$

(2)

THE

PREFACE.

TH'E follorving Treatife containing the Firyt Principles of Fluxions, though a pofthumous Work, yet being the genuine Off spring (in an Englifh Drefs) of the late Sir Ifaac Newton, needs no otber Recommendation to the Publick, than what that Great and Venerable Name will always carry along reith it.

Our Autbor in bis Pbilofopby bath pufbed bis Rejearches through a prodigious Variety of remote Confequences and complicate Dependencies into the minuteft Circumftances of Nature's Workings. This batb unavoidably rendered it very difficult and abjfrufe. Mathematicians of the firft Cbaraiter are obliged to fudy it with Care and Attention, and bave Occafion for all their Skill in Algebra and Geometry to be able to comprebend the full Force and Extent of bis Conclufions. Hence fome previous Helps and Adjffances bave alway's been thougbt neceffary to prepare young Students in the Matbematicks, before they attempt to enter upon thefe arduous Speculations, and Several ingenious Gentlemen bave ufefully employed ibeir Pens in drawing up Elements and Introductions to the Mathematical Principles of Philofophy, as others alfo bave applied tbemfelves to fupply the intermediate Steps and Conclufions (by bim paffed over in Silence) that ,ead to bis fublime Speculations in Geometry.

The PREFACE.

Altbough the Propofitions in that Book for the fake of Elegance are demonftrated in the Syntbetick Way according to the Manner of the Antients, whofe Tafte and Form of Demonftration our Autbor greatly Admired; yet it is well known that they were firft difcovered by the Ufe and Application of fome Kind of Analy is. It cannot but be very acceptable therefore to all who bave a Relifh for the ene Enquiries to be furnibsed reith that particular Method of Analyticks prepared by the Great Autbor bimjelf, which He made ufe of in arriving at bis fublime Difcoveries.

It muft be acknoweledged that Several Extracts and Specimens of tbis Metbod bave been already publibed. elferobere, (particularly by Dr. Wallis and Mr. Jones;) but as these were only incidentally delivered, or occafionally given out by the Autbor at the Importunity of bis Friends, fo they fall very much Joort of the Treatife bere publijbed: Wherein this noble Invention is digefted into a juft Method; the whole Extent and Compass of it, as far as be bad improved it, is berein comprebended; all the Cafes are taken in, and illuftrated with a greater Variety of curious Infances, and the wobole is enriched with a much larger Copia of choice Examples than is to be found any where elfe. In a Word, we bave reafon to believe that what is here delivered, is wrought up to that Perfeetion in whicbSir Ifaac bimfelf bad once intended to give it to the Publick*.

The great Advantages of deriving our Knowledge from original Autbors and Inventors, efpecially in these Subjects, are well underfood by all who bave made any Progress in them. One of which is, (and that no fmall one,) that we are bereby fecure from that $P u z z l e$ and Perplexity into which Writers of an inferior Rank are perpetually plunging their Readers. But this is not what I mean. There are two diffinguihing Excellencies of this Work, as it was intended for an

The PREFACE.

Infitution for Learners, which it may not be improper bere more particularly to point out.

The firft of thele is an uncommon Condefienfion, and Familiarity with which the Great Author all along addreffes bimfelf to bis Novitiate. He does not diciate as a Mafter, but rather as a Friend feems as it wevere to take bim by the Hand, and in fome Cafes even to confult with bim, as to the Fitne/s or Fairness of the Arts He makes ufe of to obtain bis, Conclufions. This Way of Teacbing muft needs havo a good Effect. The young Student is irrefifibly engaged to lend all bis Attention to a Companion fo agreeably inftructive.

But the next Remark is what I principally intend, that whilft the Author is teaching that Art which He invented, He does in the mean time teach the Art of Invention itfelf. I mean He dijcovers thofe particular Endowments and Acquifitions by which be attained to So great an Eminence in that extraordinary Art.

The firft of these I/sall take Notice of is an accurate and comprebenfiveKnowledge of his Subject. TheSub-• ject bere is Quantity, and wobat an immenje Treafure of Learning be bad laid up in bis Mind, and throughly digefted of all, even the moft curious and latent Properties of Quantity, appears in every Page of this Work. One is fully convinced that He muft bave viewed it in all Ligbts, and confidered it in all Relations; efpecially fuch as arife from the Conception of its being generated by local Motion. Hence proceeds that Variety of Solutions to anfwer all Difficulties that arije. Hence likervije be was able, in every particular Cafe, to Jupply that Property wobich was fitteft for bis Purpofe, and which would refolve the Problem in the moft fimple and elegant Manner.

In the next place one cannot but obferve the great natural Talent be bad of difcerning the Several curious Analogies that obtain between the correfponding relations of 2 uantities of different Species. From tbis

The PREFACE.

Source He derived thofe ingenious and ufeful Hints, that were afterwards improved by bim, into the nobleft Inventions and moft fublime Thbories. I am very fenfible, that for bis fingular Sagacity this way He coas mucb indebted to Nature. But I am apt to believe mof Perfons are endued with a good Sbare of it ; fuch I mean as bave a Capacity and Genius for Matbematical Speculations. And I am perfuaded, that our great Admiration of otbers, whom we fee eminently conspicuous for this Talent, arifes more from our own Negleet to cultivate the Bounty of Nature to us, than from any extraordinary Difference there is in ber Gift.

This naturally leads me to the laft Tibing I fball obferve on this Head. And that is our Autbor's unrevaried Diligence and inceffant Application in improving the Hints and Conceptions be bad once formed, to the bigheft Perfection. He pufbeth bis Invention through all the Difficulties tbat can arife, extends it to all the Varieties of Cajes tbat can bappen, and at laft applies it to the moft curious Purpofes.

Thefe diftinguißing Excellencies in tbis elementary Treatije of the greateft Mafter of Mathematical Learning that perbaps ever appeared in the World, I tbought it not amifs to mention in this Place: As Iconceive they afford the frongeft Motives and moft powerful Incitements to His Difciples, to follow their Great Leader in thofe Steps, by which He attained to the bigbeft pitch of Human Glory.

I hall now proceed to take a Bort View of the Body of the Work, which may be divided into the Se two principal Members. The firft is, the Metbod of Fluxions in its general Sense; and the other is the Application of this Method to the Geometry of Curve Lines. The firft of thefe may again be fubdivided into two Parts. The firt of robich contains the Doetrine of infinite Series, and is an Introduction to the other, wherein is delivered the Metbod of Fluxions peculiarly fo called.

The P R E F A C E.

In the firft Part or the Method of. Infinite Series, the Autbor very much enlarges the Boundaries of A nalyticks by introducing into Algebra or specious Arithmetick a new W.ay of exprefing Univerfal Radicals, (Juch as $\sqrt{ } r-c$) by an infinite Series of (I mple . Terms, which continually approach towards the true V alue of the Roots, and if infinitcly continued woill be equal to them, and therefore may be ufed inftead of them. He begins zvitb pointing out the particular Analogy that would, if attended to, naturally furniß the Hint for this Improvement, viz. the Conformity there is between the Relaion of Decimal Fractions to Vulgar Aritbmetick, and tbat of Infinite Series to Common Algebria; and He explains the manner of tbis Correpoondence. He bas not given us bere the particular Occafion which led bim into the Road of improving the Hint. This was befide bis prefent Purpofe. But becaufe, as I bave already objerved, a very good UJe may be made of fuch Hiftories, and efjecially as this is communicated by the Autbor bimfelf * , I fhallo therefore give it the Reader in Englifh as follows.

- Not long after I bad entered upon the Study of thes - Mathematicks, wobilf I reas perufing the Works of, - Our. Celebrated Dr. Wallis, and confidering the Se-- ries (of Univerfal Roots) by the Interpobation of weblich - He exbibits the Area of the Circle and Hyperbola, for ${ }^{2}$ - inftance, in tbis Series of Curves wobofe Bafe or com(mon Axis call $=x$, and the fucceflive Ordinates call-- $\left.\left.\overline{1-\left.x x\right|^{\frac{0}{2}}} \cdot \overline{1-x x}\right|^{\frac{1}{2}} \cdot \frac{1}{1-x x}\right|^{\frac{2}{2}} \cdot \frac{1-\left.x x\right|^{\frac{3}{2}}}{1-1-\left.x x\right|^{\frac{4}{2}}} \cdot \frac{1-\left.x x\right|^{\frac{5}{2}}}{1}$, - \&c. - I obferved that if the Areas of the Alternate - Curves which are $x, x-\frac{1}{3} x^{3}, x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}, x-$ - $\frac{3}{3} x^{3}+\frac{3}{5} x^{5}-\frac{1}{7} x^{7}$, 8xc. could be interpolated, we 乃ould - by tbis means obtain the Areas of the intermediate sones; the firft of which $\left.\overline{1-x x}\right|^{\frac{1}{2}}$ is the Area of the \& Circle.
- In order to this, firft it was obvious that in each - of thefe Series the firft Term was x; that the Second ${ }^{6}$ terms $\frac{0}{3} x^{3}, \frac{1}{3} x^{3}, \frac{2}{3} x^{3}, \frac{3}{3} x^{3}, \& x c$ were in an Arith'metical Progrefion, and confequently the two firft 'Terms of the Series to be interpolated muft be x-- $\frac{\frac{5}{2} x^{3}}{3}, x-\frac{\frac{3}{2} x^{3}}{3}, x-\frac{\frac{5}{2} x^{3}}{3}, \& c$.
© Now for the Interpolation of the reft, I confidered ' that the Denominators 1, 3, 5, 7, \&xc. were (in all ' of them) in Aritbmetical Progreflion, and confequently © the whole Difficulty confited in finding out the numeral - Co-efficients. But these in the alternate Areas, which - are given, I obferved were the fame with the Figures - of wbich the feveral afcending Powers of the Number - II confift, viz. II ${ }^{\circ}, \mathrm{II}^{\mathrm{I}}, \mathrm{II}^{2}, \mathrm{II}^{3}, \mathrm{II}^{4}$, \&c. ${ }^{6}$ that is firf $\mathbf{1}$; the fecond $\mathbf{1}, \mathbf{1}$; the third $\mathbf{1}, \mathbf{2}, \mathbf{1}$; the - fourth $\mathbf{1}, 3,3, \mathbf{1}$; the fifib $\mathbf{1}, 4,6,4, \mathbf{1}, \& c$.
- I applied myself therefore to Seek for a Metbod by - which the two firft Figures of thefe Series might be - derived from the reft; and I found, that if for the fe--cond Figure or numeral term we put m, the reft of - the terms will be produced by the continual Multipli: cation of the Terms of this Series $\frac{m-0}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}$ - $\times \frac{m-3}{4} \times \frac{m-4}{5}, \& c$.
- For inftance; Let the fecond Term m be put equal ' 104 , and there will arife $4 \times \frac{m-1}{1}$, that is 6 ; which
 sthat is $4.4 \times \frac{m-3}{4}=1$, is the fifth Term ; and the - fixtb is $4 \times \frac{m-4}{1}=0$. Wbich flewe the Series is bere sterminated in this Cafe.
- This being found I applied it as a Rule to in-- terpolate the abovementioned Series. And fince in E the Series wobich will exprefs the Circle, the fecond

The PREFACE.

term was found to be $\frac{\frac{x}{2} x^{3}}{3}$. Therefore I put m ${ }^{6}=\frac{1}{2}$, and there was produced the Terms $\frac{x}{2} \times \frac{\frac{x}{2}-1}{2}$ or 6 $-\frac{1}{8} ;-\frac{1}{8} x^{\frac{1}{2}-2}$ or $+\frac{1}{3} ;+\frac{1}{16} \times \frac{\frac{1}{2}-3}{4}$ or ($\frac{5}{128}$, and fo on in infinitum. Hence $\stackrel{4}{I}$ difcovered - that the Area fought of the Segment of the Circle is ${ }^{6} x-\frac{\frac{1}{2} x^{3}}{3}-\frac{\frac{1}{8} x^{5}}{5}-\frac{\frac{1}{16} x^{7}}{7}-\frac{\frac{5}{12} x^{9}}{9}, \mathcal{V}^{9} c$.

- In the fame manner the Areas to be interpolated of - the otber Curves might be produced, as might alfo the - Area of the Hyperbola and of the reft of the alternate
- Curves in this Series, $\overline{1+\left.x x\right|^{\frac{0}{2}}, \overline{1+x x}}{ }^{\frac{1}{2}} ; \overline{1+\left.x x\right|^{\frac{2}{2}}}$; ; $\overline{1+\left.x x\right|^{\frac{3}{2}}}$, छ$c$.
- By the fame Metbod likervife other Series might be - interpolated, and that too if they 乃bould be taken at - the diftance of two or more intervals.

This was the way by which I firt opened an En' trance into tbefe Speculations, which I fbould not bave

- remembred, but that in turning over my Papers a few
- Weeks ago, I accidentally caft my Eyes upon thofe re-
- lating to this Matter.
- When I bad proceeded tbus far, it immediately
- occurred to me, that the Terms $\left.\overline{1-x x}\right|^{\frac{0}{2}},\left.\overline{1-x x}\right|^{\frac{2}{2}}$; : $\left.\frac{1-x x}{}\right|^{\frac{4}{2}},\left.\overline{1-x x}\right|^{\frac{6}{2}}, \mathcal{E}_{6}$. that is $1,1-x x, 1-2 x x$ - $+x^{4}, 1-3 x^{x}+3 x^{4}-x^{6}, \xi^{3} c$. might be interpolated
- inthe fame manner as I bad done the Areas generated
- by them, and for this there needed notbing elfe, but only
- toleave out the Denominators 1,3,5,7, \&c. in the
- Terms that exprefs the Areas; that is, the Co-efficients
- of the Terms of the Quantity to be interpolated $\left(1-\left.x x\right|^{\frac{1}{2}}\right.$,
-or $\left.\overline{1-x x}\right|^{\frac{3}{2}}$; or univerfally $\left.\overline{1-x x}\right|^{m}$,) will be obtained by

x

- the continual multiplication of the terms of this Series c $m \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}$, \& cc.
- Tbus (for Example) $\left.\overline{1-x x}\right|^{\frac{1}{2}}=1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{10} x^{6}$,
'\&xc. and $\overline{1-x x}{ }^{\frac{3}{2}}=1-\frac{3}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{10} x^{6}$, \&cc. and ${ }_{6}{ }^{6}-\left.x_{x}\right|^{\frac{1}{3}}=1-\frac{1}{3} x x-\frac{1}{9} x^{4}-\frac{5}{8} x^{6}, \xi^{3} c$.

Thus I difiovered a general Metbod of reducing ' Radicals into Infinite Series by the Rule * which I Sent ${ }^{6}$ in my laft Letter, before I obferved that the fanie tbing ' might be obtained by the ExtraEtion of Roots.

But after I bad found out that method, this other way

- could not remain long unknowen; for in order to prove ' the Trutb of thefe Operations, I multiplied $1-\frac{1}{2} x^{2}$ - $-\frac{1}{8} x^{4}-\frac{1}{10} x^{6}$, \&c. into itfelf, and the product is ${ }^{6}$ 1-xx, all the Terms after these in infinitum vani/b. ${ }^{-}$ing ; and $\int 01-\frac{1}{3} x x-\frac{1}{9} x^{4}-\frac{5}{8} x^{6}$, \&c. twice drawn - into itfelf produced $1-x x$. As this was a certain - Demonftration of the Truth of thefe Conclufions, So I - was thereby naturally led to try the Converse of it, - viz. whether thefe Series that now were known to be - the Roots of the 2 uantity 1 - $x x$ might not be extracted - thence by the Rule for Extraction of Roots in Aritbme' tick; and upon trial I found it fucceed to my Defire.
- I fball bere fet down the form of the Procels in . Quadraticks.

$$
\begin{aligned}
& 1-x x\left(1-\frac{1}{2} x x-\frac{1}{8} x^{4}-\frac{1}{86} x^{6}, \& x c .\right. \\
& \frac{1}{0}-x x \\
& \frac{-x x+\frac{1}{4} x^{4}}{-\frac{1}{4} x^{4}} \\
& \frac{-\frac{1}{4} x^{4}+\frac{1}{8} x^{6}+\frac{1}{6} x^{8}}{-\frac{1}{8} x^{6}-\frac{4}{6} x^{8}}, 8 c .
\end{aligned}
$$

- This being found I laid afide the Metbod of Inter-- polation, and affumed tbefe Operations as a more ge-

[^0]
The PREFACE.

- nuine Foundation to proceed upon. In the mean time - I was not ignorant of the Way of Reduction by Divi-- vifion, which was 50 much eafier.
- Proceeding upon this Foundation, the next thing I - attempted, was the Refolution of affected Equations; ‘wobich I alfo obtained, \&c.

We bave in this Account the Origin of the Several Improvements the Author made in the new Way of Notation by Infinite Series: the feveral Brancbes of which are bere dippofed in Order and metbodically digefted. He firft herws bow to refolve by Divifion Fractions with multinomial Denominators. Then He proceeds to extract the Roots of Pure Powers; and laftly exbibits the Metbod for extracting thofe likervife of affected Equations. And whereas the Metbods delivered before by Vieta, Oughtred, and otbers, for this Operation in Numbers, were very intricate and tedious, He bere fupplies one much more eafy and free from that Load of Juperfluous Terms with which theirs were incumbred.

The Foundation being tbus laid, He paffetb on to the Method of Fluxions. This is the Body and principal Part of the Work. It is the diftinguifbing Cbaralter of our Author, that from a few plain and obvious Principles He deduceth the moft furprifing Conclufions; and this Part of His Cbaraiter no where appears to greater Advantage than in the Invention of His Method of Fluxions. The Ancients bad confidered the Area of a Recitangle as produced by the Motion of one of its Sides along the other. Our Autbor extends this Principle to all Kinds of matbematical 2 uantities. The Conception is very eafy and natural: We See by continual Experience that all Kinds of Figures are actually defcribed by the Motion of Bodies. But it is evident, that 2 uantities generated in this manner in a given Time become greater or lefs, in Proportion as the Velocity with which they are generated is greater or lefs. Tbefe were the Confiderations that led the

sii

The PREFACE.

Autber to apply bimpelf to the finding out of the Magnitudes of Finite 2 uantities by the Velocities of their generating Motions, wobich gave rife to the Metbod of Fluxions.

The whole Metbod is bere reduced to thefe two Pro. blems: i. The length of the Space defcribed being continually given, to find the Velocity of the Motion at any time propofed. And 2. the Converre of this. The Velocity of the Motion being continually given, to find the Length of the Space defcribed at any time propofed.

In the Solution of the firft Problem, as He is to find the comparative Velocities of Quantities, every thing is therefore fuppofed to be brougbt to an Equation. Then He beres bore to refolve it in its full extent, by multiplying the Terms by any arithmetical Progreffion whatfoever; bence an infinite Variety of Solutions may be obtained, So that we may always furnifh Juch as beft fuit every particular Cafe. Then be herevs bow to find the Relation of the Fluxions, when the Equation involves furd Quantities, or even fuch as are Geometrically irrational. Laftly He demonftrates all by the Metbod of Moments, which be bere tbus defines. Moments are the indefinitely fmall Parts of flowing Quantities, by the Accelfion of which in indefinitely fmall Portions of Time, they are continually increafed. Moments we fee then are the indefinitely little Parts of frinte Quantities; that is, are leffer than any Quantity that can be affigned. The fame thing is meant, when it is Jaid they bear no Proportion to finite Quantities, or in Comparifon of them are notbing, and therefore may be rejected as fuch. This Way of Demonftration bas been always received as juft and legitimate, being founded upon tbis allowed Principle, that Quantity may be diminilhed in infinitum, or 50 far, as to become lefs than any finite or affignable Quantity wobatfoever. "All this is clear and intelligible concerning theje Moments. "And this is all that is neceffary for any Ufe our Autbor makes of them; and there-

The PREFACE.

fore (we may prefume) this is the wobole likerwife of what He would be underftood to mean by them. Doubtlefs many Difficulties weill arife to fuch as bufy themfelves in making Enquiries into the precife Magnitude, the exait Form and Nature of infinite Quantities. In all our Reafonings about Infinity, there are certain Bounds fet to our finite and limited Capacities, beyond wbich all is Darknefs and Confufion. And it is the diftinguibing Mark of true Pbilo opoby to know where to ftop. Tbis is certain, we can know nothing of it but by Comparifon only. However, fuch Conclufions as are fairly deduced from Principles taken in a Senfe that we can comprebend, ought not to be rejeited, on account of any Difficulties that may arife for want of a complete and adequate Underftanding of the wobole Extent and Nature of fuch Principles. In the mean time I cannot but objerve, that our Autbor was greatly averfe to Difputes upon any Account, and it was orving to bis being unexpectedly drawn into one concerning bis Opticks, that be laid afide the Defign be bad then of publiking this very Ireatije of the Metbod of Fluxions. But to return.

The Author's next Problem is, an Equation being propofed including the Fluxions of Quantities, to find the Relation of thefe Quantities to one another. And bere becaufe the Operation is eafy and may fometimes be of ufe, be firft gives the Solution in a particular Cafe. Then be proceeds to the general Solution wherein be comprebends the whole Compafs of this moftdifficult Problem; Sherwing in all Cajes bores to obtain the Fluent either in finite Terms, or when that cannot be done, at leaft in an infinite Series. He bas contrivedmany curious Proceffes for thefe Solutions, and often fhews bow the Fluent may be found an infinite Variety of Ways. But zobereas in the fluential Equation thus obtained, there often comes out one or more Terms that are infinite, fucch as $\frac{d}{o}$, be bas aljo provided an Expedient for this

Difficulty, which is the Tranfinutation of the flowing Quantity into another compounded of the faid flowing Quantity, and a given one; by which means fuch infinite Quantity becomes finite, though confifing of Terms infinite in number.

In the latler Part, the Ufefulnefs and Excellence of this Method is 乃eron by a fucce/sful Application of it to the making of feveral Improvements in the Geometry of Curve-Lines. But for thefe, that I may not repeat the fame Things over again, If hall refer the Reader to the Contents. Obferving only tbus mucb in general; that as the Problem for determining the Quality of the Curvature of Curves is entirely new; So in fuch Speculations as bave been already confidered byotbers, the Reader will find all the Inveftigations and ConftruEtions contrived seith that beautiful Simplicity and Elegance which was peculiar to our Autbor. Laftly, I muft not omit to take notice, that every thing is here performed without baving recourfe to fecond Fiuxions: And He bath adjoined a Scholium to Prob. 9. wherein is delivered a Theorem, by the belp of qubich they may be managed as firft Fluxions, and Jo tbeir Fluents may be found by the Tables at that Problem.

This is the Subftance of the Work as we bave it at prefent. It muft be acknowledged that Sir Ifaac left it unfinibed, and the firft Occafion of His laying it afide I bave already mentioned. The ingenious Dr. Pemberton* has acquainted us that be bad once prevailed with Him to complete bis Defign and let it come abroad. But as Sir Ifaac's Death unbappily put a fop to that Uudertaking, I Ball efteem it none of the leaft Advantages of the prefent Publication, if it may prove a means of exciting that Honorable Gentleman, webo is poffeffed of bis Papers, to think of communicating them. to fome able Hand; that so the Piece may at laft come out perfect and entire.

[^1]
THE

CONTENTS.

THE Introduction: Or the Solution of Equations by Infinite Series. Page I
Problem i.

From the Flowing quantities given to find their Fluxions.
p. 27
Problem II.

From the given Fluxions, to find the Flowing 2 uantities.
P. 34

$$
\text { Problem } \text { III. }
$$

To determine the Maxima and Minima of Quantities.
Problem iv.

To draw Tangents to Curves.
p. 62
Problem V.

To find the Quantity of Curvature in any Curve.

The CONTENTS.

Problem VI.

To. find the Quality of Curvature in any Curve. p. 104 Problem VII.

To find any Number of Curves that may be Squared.

Problem VIII.

To find any Number of Curves zobofe Areas may be compared with the Conick Sections.
p. 112

Problem IX.

To find the Quadrature of any Curve proposed.
p. 119

Problem X .
To find any Number of Curves that may be rectified.
p. 164

Problem XI.
Fo find any Number of Curves whole Lines may be compared with any Curve aligned. p. 173
Problem XII.

To determine the Lengths of Curves.

OF THE

Method of Fluxions

A N D

INFINITE SERIES.

Introduction: Or, the Refolution of Equations by Infinite Series.

HA V IN G obferv'd that moft of our modern Geometricians neglecting the fynthetical Method of the Ancients, have applied themfelves chiefly to the analytical Art, and by the Help of it have overcome fo many and fo great Difficulties, that all the Speculations of Geometry feem to be exhaufted, except the Quadrature of Curves, and fome other things of a like Nature which are not yet brought to Perfection: To this End I thought it not a.mifs, for the fake of young Students in this Science, to draw up the following Treatife; wherein I have endeavoured to enlarge the Boundaries of Analyticks, and to make fome Improvements in the Doctrine of Curve Lines.

The great Conformity there is between the feveral Operations of the fame Kind in Species and in common Numbers is obvious to every Body; indeed there feems to be no difference between them, except only in the Marks or Characters made ufe of in each. Upon this account I was very much furpris'd that a Methad of transferring the lately invented Doctrine of Decimal Fractions in like manner to Species, had not been thought of,
unlefs in the fingle inftance of the Quadrature of the Hyperbola by Mercator, and the rather fo, fince by this means a Way would have been opened to higher and more abttrufe Difcoveries, as will by and by appear.

This Doctrine of Species in an Infinite Series, bears the fame refpect to common Algebra, that the Method of decimal Fractions does to vulgar Arithmetick, and therefore the Operations of Ac: dition, Subftraction, Multiplication, Divifion and Extraction of Roots here may be eafily learn'd from thence, if the Learner, whom we fuppofe pretty well fkill'd in decimal Arichmerick and the vulgar Algebra, duly obferves the Correfpondence that obtains between decimal Fractions and algebraick Terms infinitely continued; for as in Numbers the Places towards the right Hand continually decreafe in a decuple or fubdecuple Proportion, fo it is refpectively in Species when the Terms are difpos'd (as is often directed in what follows) in an uniform Progreffion infinitely continued according to the Order of the Dimenfions of any Numerator or Denominator: And as the advantage of Decimals is this, that all vulgar Fractions and Radicals being reduced to them, in fome meafure acquire the Nature of Integers, and may be manag'd as fuch, fo it is a Convenience attending infinite Series in Species that all Kinds of complicate Terms (fuch as Fractions whofe Denominators are compounded, the Roots of compound Quantities or of affected Equations, and the like) may be reduced to the Clafs of fimple Quantities, i.e. to an infinite Series of Fractions whole Numerators and Denominators are fimple Terms, which will thus be freed from thofe Difficulties that in their original Form feem'd almoft infuperable. In the firft place therefore I fhall fhew how thefe Reductions are to be perform'd, or how any compound

Quantities may be reduc'd to fuch fimple Terms, efpecially when the Methods of computing are not obvious: After which I fhall apply this Analy fis to the Solution of Problems.
Reduction by Divifion and Extraction of Roots will be plain from the following Examples, if you compare the like Methods of Operation in Decimals and in fpecious Arithmetick.

Examples by Divifion.

The Fraction $\frac{a a}{b+x}$ being propofed, divide $a a$ by $b+x$ in the following Manner.
$b+x) a a+0\left(\frac{a a}{b}-\frac{a a x}{b^{2}}+\frac{a a x^{2}}{b^{3}}-\frac{a a x^{3}}{b^{4}}+\frac{a a x^{4}}{b^{5}} \& x\right.$.

$$
\begin{aligned}
& a a+\frac{a a x}{b} \\
& 0-\frac{a a x}{b}+0 \\
& -\frac{a a x}{b}-\frac{a a x^{2}}{b^{2}} \\
& 0+\frac{a^{2} x^{2}}{b^{2}}+0 \\
& \frac{+\frac{a^{2} x^{2}}{b^{2}}+\frac{a^{2} x^{3}}{b^{3}}}{0-\frac{a^{2} x^{3}}{b^{3}}}+0 \\
& \frac{-\frac{a^{2} x^{3}}{b^{3}}-\frac{a^{2} x^{4}}{b^{4}}}{0+\frac{a^{2} x^{4}}{b_{4}}} \& c \text {. }
\end{aligned}
$$

The Quotient therefore is $\frac{a a}{b}-\frac{a^{2} x}{b^{2}}+\frac{a^{2} x^{2}}{b^{3}}$ $\frac{a \operatorname{ax}{ }^{3}}{b_{4}}+\frac{a a x^{4}}{b_{3}} \& c$. which Series infinitely continued is

$$
\text { B } 2
$$

equivalent
equivalent to $\frac{a a}{b+x}$ Or making x the first Term of the Divifor in this manner $x+b$) $a a+0\left(\frac{a a}{x}-\right.$ $\frac{a a b}{x^{2}}+\frac{a^{2} b^{2}}{x^{3}}-\frac{a^{2} b^{3}}{x^{4}} \& x$. the Quotient will be found as in the foregoing Procefs.

In like manner the Fraction $\frac{1}{1+x x}$ will be reducen to $1-x^{2}+x^{3}-x^{6}+x^{8} \&<$ c. or to $x^{-3}-x^{4}+$ $x^{-5}-x^{-8} \& c$. and the Fraction $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1-1-x^{\frac{1}{2}}-3^{x}}$ will be reduced to $2 x^{\frac{7}{2}}-2 x+7 x^{\frac{3}{2}}-13 x^{2}+34 x^{\frac{5}{2}}$ \&c.

Here it mut be observed that I make ufe of $x_{0}^{-1} x_{0}^{-2} x_{0}^{-3} x_{0}^{-4} \& c$. for $\frac{1}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}}, \frac{1}{x^{4}}, \& x$ c. as alto of $x_{2}^{\frac{1}{2}} x_{1}^{\frac{3}{2}} x_{2}^{\frac{5}{2}} x_{2}^{\frac{1}{3}} x_{3}^{\frac{2}{4}}$ \&cc. for $\sqrt{ } x, \sqrt{ } x^{3} \sqrt{x} x_{1}^{5} \sqrt[3]{3}, \sqrt[3]{\sqrt{3}} x_{0}^{2}$ \& c . and of $x^{-\frac{1}{2}} x^{-\frac{2}{3}} x^{-\frac{1}{4}} \& c$. for $\frac{1}{\sqrt{x},}, \frac{x}{3}, \frac{1}{2}, \frac{1}{4}$, which way of Notation is drawn from the Rule of Analoby, as may be apprehended from there and foch like geometrical Progeffions, viz. $x_{2}^{3} x_{0}^{\frac{5}{2}} x_{0}^{2} x_{0}^{\frac{3}{2}} x$, $x_{2}^{\frac{1}{2}} x_{0}^{0}$ (or 1$) x_{0}^{-\frac{1}{2}} x_{0}^{-1} x_{0}^{-\frac{3}{2}} x_{0}^{-2} \& c$.
'In the fame manner for $\frac{a a}{x}-\frac{a a b}{x^{2}}+\frac{a a b^{2}}{x^{3}} \& c$. may be wrote $a x^{-1}-a^{2} b x^{-2}+a^{2} b^{2} x^{-3} \& c$. Inftead of $\sqrt{a a-x x}$ may be wrote $\left.\overline{a a-x x}\right|^{\frac{1}{2}}$; and $\left.\overline{a a-x x}\right|^{2}$ inftead of the Square of $a a-x x$; and $\left.\frac{a b^{2}-y^{3}}{b y+y \mid} \right\rvert\, \frac{1}{3}$ inficad of $\frac{3 a b^{2}-y^{3}}{\sqrt{b y+y y}}$; and the like of others. Hence we may not improperly diftinguif Powers into affirmative and negative, integral and fractonal.

Examples of Reduction by Extraction of Roots.

The Quantity $a a+x x$ being propofed, you may thus extract its fquare Root.
$a a+x x\left(a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{128 a^{7}}+\frac{7^{x^{10}}}{256 a^{9}}-\frac{21 x^{12}}{1024^{11}}\right.$ na

$$
\begin{aligned}
& \frac{+x x+\frac{x^{4}}{4 a^{2}}}{x^{4}} \\
& -\frac{x^{4}}{4 a^{2}} \\
& +\frac{x^{4}}{4 a^{2}}-\frac{x^{6}}{8 a^{4}}+\frac{x^{6}}{8 a^{4}}-\frac{x^{8}}{64 a^{6}} \\
& +\frac{x^{8}}{64 a^{6}} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

So that the Root is found to be $a+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+1$ $\frac{x^{6}}{16 a^{5}} \& x c$. Where it may be obferved, that towards the End of the Operation I neglect all those Terms whore Dimenfions would exceed the Dimentions of the lat Term, to which only I intend to continue the Root fuppofe to $\frac{x^{x_{2}}}{a^{11}}$

Here

Here alfo the Order of the Terms may inverted in this manner $x x+a a$ in which Cafe the Root will be $x \frac{1}{1} \frac{a a}{2 x}-\frac{a^{4}}{8 x^{3}}+\frac{a^{6}}{16 a^{5}}-\frac{5 a^{8}}{128 a^{7}}$ \&c. likewife the Root of $x-x x$ is $x^{\frac{1}{2}}-\frac{1}{2} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{5}{2}}-\frac{x}{6} x^{\frac{7}{2}} \& c$. The Root of $a a+b x-x x$ is $a+\frac{b x}{2 a}-\frac{x x}{2 a}-\frac{b^{2} x^{2}}{8 a^{3}} \& c$. And laftly the Root of $\frac{1+a x x}{1-x b x}$ is $\frac{1+\frac{1}{2} a x^{2}-\frac{1}{2} x^{2}}{1-\frac{1}{2} b x^{3}-\frac{1}{2} b^{2} x^{4}}$ $\frac{\frac{1}{1} \frac{1}{1} a^{3} x^{6}}{-\frac{1}{1} b^{3} x^{0}} \& c$. which by dividing becomes $1-\frac{1}{1} b+\frac{1}{2} a b$ $\times x^{2}+\frac{3}{5} b^{2}+\frac{1}{4} a b-\frac{1}{0} a^{2} \times x 4+\overline{\frac{5}{5} b^{3}+\frac{3}{10} a b^{2}-\frac{1}{5} a^{2} b+\frac{1}{1} a^{2} a^{3}}$ $x x^{6}$, \&c.

But thefe Operations may very often be abbreviated by a due Preparation, as in the foregoing Example to find $\sqrt{ } \frac{1+a x x}{1+b x x}$, if the Numerator and Denominator had not been the fame, I might have multiplied each by $\sqrt{1-b x x}$ which would have produced $V \frac{1+a x^{2}-a b x^{4}}{1-b x x}$ and the reft of the Work might have been perform'd by extracting the Root of the Numerator only, and then dividing by the Denominator.

Herice I conceive it will fufficiently appear by what means any other Roots may be extracted, and how any compound Quantities, though never fo much entangled with Radicals or compound Denominators (fuch for inftance as this $\left.x^{3}+\frac{\sqrt{x}-\sqrt{1-x x}}{\sqrt{a x x+x^{3}}}-\frac{5 x^{3}+2 x^{5}-x^{\frac{3}{2}}}{\sqrt[3]{x^{3}+x x}-\sqrt{2 x-x^{\frac{2}{3}}}}\right)$ may be reduced to infinite Series confifting of fimple Terms.

Of the Reduction of affected Equations.

As to affected Equations we muft be fomething more particular in explaining how their Roots are
to be reduced to fuch Series as thefe, becaufe their Doctrine in Numbers as hitherto deliver'd by Mathematicians is very perplex' d, and incumber'd with fuperfluous Operations, fo as not to afford proper Specimens for performing the work in Species. I fhall therefore firf fhew how the Refolution of affected Equations may be compendioufly performed in Numbers, then I fhall apply the fame to Species.

Let this Equation $y^{3}-2 y-5=0$ be propofed to be refolv'd, and let 2 be a Number (any how found) which differs from the true Root lefs than by a tenth part of itfelf, then I make $2+p=y$, and fubftitute $2+p$ for y in the given Equation, by which is produced a new Equation $p^{3}+6 p^{2}+10 p-1$ $=0$ whofe Root is to be fought for that it may be added to the Quote. Thus rejecting $p^{3}+6 p^{2}$ becaufe of its Smallnefs, the remaining Equation $10 p-1=0$ or $p=0,1$ will a pproach very near to the Truth. Therefore I write this in the Quote, and fuppofe $0,1+q=p$, and fubftitute this fictitious Value of p as before, which produces $q^{3}+6,3 q^{2}+$ $11,23 q+0,361=0$, and fince $11,23 q+0,06{ }_{I}=0$ is near the truth, or $q=0,0054$ nearly (i.e. dividing 0,061 by 11,23 till fo many Figures arife as there are places between the firft fignificant Figure of this and of the principal Quote exclufively, as here there are two fuch Places between 2 and 0,005) I write 0,0054 in the lower part of the Quote as being negative, and fuppofing $-0,0054$ $+r=q$, I fubftitute this as before, and thus I continue the Operation as far as I pleafe after the manner exhibited in the following Table.

$y^{3}-2 y-5=0$		$\begin{aligned} & +^{2,10000000} \\ & =0,0,54485 \\ & \hline 0 \end{aligned}$
$2+p=$		
	-23	$\begin{aligned} & +8+12 p+5 p^{2}+p^{3} \\ & -4-2 p \end{aligned}$
	The Sum	$=-1+10 p+6 p^{2}+p^{3}$
$0,1+2=t$	$\begin{aligned} & +p^{3} \\ & +6 p^{2} \end{aligned}$	+0,001+0,03q+0,392$+q^{3}$
		${ }_{+1}+100{ }^{10,06}$
	The Sum	+0,061+11,239+6
$4+r$		$\frac{+0,061+11,239+6,39^{2}+9^{3}}{-0,000000157465+5,000887 / 88 r-6,961}$
	+0,061	+0,061
	The Sum	

But the Work may be much fhortned towards the End, efpecially in Equations of many Dimenfions by this Method. Having firft determin'd how far you intend to extract the Root, count fo many Places after the firft Figure of the Co-efficient of the laft Term but one, of the Equations that refult on the right Side of the Table, as there remain places to be fill'd up in the Quote, and reject the Decimals that follow. But in the laft Term the Decimals may be neglected after fo many more Places as there are decimal Places fill'd up in the Quote, and in the antepenultimate Term reject all that are after fo many fewer places; and fo on by proceeding arithmetically according to that Interval of Places: Or, which is the fame thing, you may cut off every where fo many Figures as in the penultimate Term, fo that their loweft Places may be in arithmetical Progreffion according to the Series of the Terms, or mult be conceiv'd to be fill'd up with Cyphers when it happens otherwife. Thus in the prefent Example, if I defired to continue the Quote no farther than to the eighth Place of Decimals, when I fubftituted 0,0054 $\not-r$ for q, where four decimals are completed in the Quote, and as many more remain to be found, I might have omitted the Figures in the five inferior Places; which therefore 1 have mark'd or cancell'd by little lines drawn through them; and indeed I might have omitted the firft term r^{3}, although its Co-efficient be 0,99999; thofe Figures therefore being expung'd, for the following operation there arifes the Sum $0,0005416+11,162 r$, which by Divifion continued as far as the Term prefcrib'd, gives 0,00004852 for r, which completes the Quote to the Period requir'd; then fubtracting the negative Part of the Quote from the affirmative Part there arifes 2,03455148 for the Root of the propos'd Equation.

It may likewife be obferv'd that at the begin. ning of the Work, if I had doubted whether 0,1 $+p$ were a fufficient Approximation to the Rooi, inftead of $10 p-1=0$, 1 might have fuppofed $6 p^{2}+10 p-1=0$, and fo have wrote the firt Figure of its Root in the Quote as being near to nothing; and in this manner it may be conveniem to find the fecond or even the third Figure of the Root, when in the fecondary Equation, abour which you are converfant, the Square of the Co. efficient of the penultimate Term is not ten times greater than the Product of the laft Term muli. plied into the Co-efficient of the antepenultimatt Term : And indeed you will often fave fome Pains, efpecially in Equations of many Dimenfions, if you feek for all the Figures to be added to the Quote in this manner, that is, if you extract the leffer Roo out of the three laft Terms of its fecondary Equv tion: For thus you will obtain at every time a many Figures again in the Quote.

And now from the Refolution of numeral Equa. tions I proceed to explain the like Operations in Species ; concerning which it will be neceffary to premife the following Obfervations.

Firft, That fome one of the Species or literal Co. efficients, if there are more than one, fhould be diftinguilhed from the reft, which either is or may be fuppofed to be much the leaft or greateft of all, or neareft to a given Quantity: The Reafon of which is that becaufe of its Dimenfions continual. ly encreafing in the Numerators or the Denominators of the Terms of the Quote, thofe Terms nay grow lefs and lefs, and therefore the Quote may conflantly approach to the Root required; as may appear from what is faid before of the Species x in the Examples of Reduction by Divifion and Extraction of Roots, and hereafter for this Species I hall generally make ufe of x or z, as alfo
$y, p, q, r, s, \mathcal{\mho} c$. for the radical Species to be extracted.

Secondly, When any complex Fractions or furd Quantities happen to occur in the propofed Equation, or to arife afterwards in the Procefs, they ought to be removed by fuch Methods as are fufficiently known to Analyfts. As if we fhould have $y^{3}+\frac{b b}{b-x} y^{2}-x^{3}=0$, multiply by $b-x$ and from the Product $b y^{3}-x y^{3}+b^{2} y^{2}-b x^{3}+x^{4}=0$, extract the Root y. Or we might fuppofe $y \times \overline{b-x}=v$, and then writing $\frac{v}{b-x}$ for y, we fhould have $v^{3}+$ $b^{2} v^{2}-b^{3} x^{3}+3 b^{2} x^{4}-3 b x^{5}-1-x^{6}=0$, whence extracting the Root v, we might divide the Quote by $b-x$ in order to obtain y : Alfo if the Equation $y^{3}-x y^{\frac{1}{2}}+x^{\frac{4}{3}}=0$ were propofed, we might put $y^{\frac{x}{2}}=v$, and $x^{\frac{x}{3}}=z$, and fo writing vv for y and z^{3} for x, there will arife $v^{6}-z^{3} v+z^{4}=0$; which Equation being refolved, y and x may be reftored, for the Roor will be found $v=z+z^{3}+$ $6 z^{5}, \mathcal{E}^{c} c$ and reftoring y and x, we have $y^{\frac{1}{2}}=x^{\frac{1}{3}}+x$ $+6 x^{\frac{5}{3}}, \xi^{2} c$. then fquaring $y=x^{\frac{2}{3}}+2 x^{\frac{4}{3}}+13 x^{2}, \xi^{2} c$.

After the fame manner if there fhould be found negative Dimenfions of x and y, they may be remov'd by multiplying by the fame κ and y, as if we had the Equation $x^{3}+3 x^{2} y^{-x}-2 x^{-1}-16 y^{-3}$ $=0$, multiply by x and y^{3}, and there will arife $x^{4} y^{3}+3 x^{3} y^{2}-2 y^{3}-16 x=0$, and if the Equation were $x=\frac{a a}{y}-\frac{2 a^{3}}{y^{2}}+\frac{3 a^{4}}{y^{3}}$, by multiplying both parts into y^{3} there would arife $x y^{3}=a^{2} y^{2}-2 a^{3} y$ $+3 a^{4}$. And fo of others.

Thirdly, When the Equation is thus prepared, the Work begins by finding the firft Term of the Quote ; concerning which, as alfo for finding the following Terms, we have this general Rule, when to which Cafe the other two are reducible ; i.e. eitber when the faid Species is very great or when it nearly approacbos to a given Quantity.

Of all the Terms in which the radical Species $\left(y, p, q\right.$ or r, \mathcal{E}^{c}.) is not found, choofe the loweft in refpect of the dimenfions of the indefinite Species, $\left(x, z, \varepsilon^{3}\right.$ c.) then choofe any other Term in which that radical Species is found, fuch as that the Progreffion of the Dimenfions of each of the forementioned Species being continued from the Term firft affumed to this Term, may defcend as much as may be, or afcend as little as may be ; and if there are any other Terms whofe Dimenfions may fall in with this Progreffion continued at pleafure, they mult be taken in likewife; laftly, from thefe Terms thus felected, and made equal to nothing, find the Value of the faid radical Species, and write it in the Quote.
But that this Rule may be more clearly apprehended, I will explain' it farther by help of the annexed Diagram. Make the Right Angle BAC, and divide its Sides $A B, A C$ into equal Parts ; then by Perpendiculars rais'd from every Point in the Divifion, diftribute the angular Space into equal Squares or Parallelograms, which you may conceive to be denominated from the Dimenfions of the Species x and y, as they are here infcrib'd: Then when any Equation is propos'd, mark fuch of the Parallelograns as correfpond to all the Terms, and let a Ruler be apply'd to two or perhaps more of the Parallelograms thus mark'd, of
which let one be the loweft in the left Hand Column at AB , and the other touching the Ruler towards the right Hand; and let all the reft not touching the Ruler lie above it: Then felect thofe Terms of the Equation which are reprefented by the Parallelograms that touch the Ruler, and from them find the Quantity to be put in the Quote.

Thus to extract the Root y out of the Equation
$y^{6}-5 x y^{5}+\frac{x^{3}}{a} y^{4}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}+b^{2} x^{4}=0$, I mark the Parallelograms belonging to the Terms of this Equation with the Mark * as you fee here done. Then I apply the Ruler DE to the lower of the Parallelograms mark'd in the left Hand

Column, and turning it round upwards towards the right Hand till it begins in like manner to touch another or perhaps more of the $\mathrm{Pa}-$ rallelograms that are mark'd, I fee that the Places fo touch'd belong to $x^{3}, x^{2} y^{2}$, and y^{6}. Therefore from the Terms $y^{6}-7 a^{2} x^{2} y^{2}+6 a^{3} x^{3}$ as if equal to nothing (and moreover if you pleafe reduced to $v^{6}-7 v^{2}-1-6=0$ by making $\left.y=v \sqrt{a x},\right) 1$ feek the Value of y and find it to be fourfold $+\sqrt{ } a x$, $-\sqrt{ } a x,+\sqrt{ } 2 a x$, and $-\sqrt{ } 2 a x$; of which I may take any one for the initial Term of the Quote, according as I defign to extract this or that Root of the given Equation. Thus having the Equation y^{5} $b y^{2}+9 b x^{2}-x^{3}=0$, I chufe the Terms - $b y^{2}$ $+9 b x^{2}$, and thence I obtain $+3 x$ for the initial Term of the Quote. And having y^{3} $\frac{1}{1} a x y+a a y^{3}-x^{3}-2 a^{3}=0$, I make choice of $y^{3}+a^{2} y-2 a^{3}$, and its Root $+a$ I write in the Quote. Alfo having $x^{2} y^{5}=3^{4} x y^{2}=c^{5} x^{2}+c^{7}$
$=0$ I felect $x^{2} y^{5}+c^{7}$, which gives $-\sqrt{3}_{\frac{5}{x^{2}}} \frac{7}{\text { f }}$ for the firt Term of the Quote. And the like of others.
But when this Term is found, if its Power fhould happen to be negative, I deprefs the Equation by the fame Power of the indefinite Species, that there may be no need of depreffing it in the Refolution; and befides that the Rule hereafter delivered for the Suppreffion of fuperfluous Terms niay be commodioufly apply'd. Thus the Equation $8 z^{6} y^{3}+a z^{6} y^{2}-27 a^{9}=0$, whofe Root is to begin by the Term $\frac{3 a^{3}}{2 z^{2}}, ~ I$ deprefs by z^{2}, that it may become $8 z^{4} y^{3}+a z^{4} y^{2}-2 \eta a^{9} z^{-2}=0$, before I attempt the Refolution.

The fubfequent Terms of the Quotes are deriv'd by the fame Method, in the Progrefs of the Work, from their feveral fecondary Equations, but commonly with lefs trouble. For the whole Affair is perform'd by dividing the loweft of the Terms affected with the indefinitely fmall fpecies $\left(x, x^{2}, x^{3}, \mathcal{E}^{c}\right.$.) without the radical Species $\left(p, q, r, \xi^{\circ}\right.$.), by the Quantity with which that radical Species of one Dimenfion only is affected without the other indefinite Species, and by writing the refult in the Quote. So in the following Example the Terms $\frac{x}{4}, \frac{x x}{64 a^{2}}$, $\frac{131 x^{3}}{512 a^{2}}, \Xi^{3} c$. are produced by dividing $a^{2} x, \frac{7}{\frac{1}{1}} a x^{2}$, $\frac{3.37}{\frac{3}{2} \frac{1}{8} x^{3}}, \mathcal{E}^{3} c$. by $4 a a$.

Thefe things being premifed, it remains now to exhibit the Praxis of Refolution. Let then the Equation $y^{3}-a^{2} y-1-a x y-2 a^{3}-x^{3}=0$ be propos'd to be refolv'd, and from itsTerms $y^{3}+a^{2} y-2 a^{3}=0$ being a fictitious Equation, by the third of the foregoing Premires I obtain $y-a=0$, and therefore I write + a in the Quote, then becaufe $+a$ is not the complete Value of y, I put $a+p=y$, and inftead of y in the Terms of the Equation written in the Margin, I
fubftitute $a+p$, and the Terms refulting ($p^{3}-1$ $3 a p^{2}+a x p, \varepsilon^{c} c$. .) I again write in the Margin, from which again, according to the third of the Premifes, I felect the Terms $+4 a^{2} p+a^{2} x=0$ for a fictitious Equation, which giving $p=-\frac{1}{4} x$, I write $-\frac{1}{4} x$ in the Quote. Then becaufe $-\frac{1}{4} x$ is not the accurate Value of p, I put $-\frac{x}{4} x+q=p$, and in the marginal Terms for p I fubftitute - $\frac{1}{4} x$ $+q$, and the refulting Terms $\left(q^{3}-\frac{3}{4} x q^{2}+3 a q^{2}\right.$, Ec.) I again write in the Margin, out of which, according to the foregoing Rule, I again felect the Terms $4 a^{2} q-\frac{1}{16} a x^{2}=0$ for a fictitious Equation, which giving. $q=\frac{x x}{64 a^{\prime}}$ I write $\frac{x x}{64 a}$ in the Quote. Again fince $\frac{x x}{64 a}$ is not the accurate Value of q, I make $\frac{x x}{64^{a}}+r=q$, and fo inftead of q I fubftitute $\frac{x x}{6_{4} a}+r$ in the marginal Terms. And thus I continue the Procefs at pleafure, as the following Table exhibits to view.

If it were required to continue the Quote only to a certain Period, that x, for inftance, fhould not afcend beyond a given Dimenfion; in fubftituting the Terms, I omit fuch as I forefee will be of no Ufe: For which this is the Rule, that after the firt Term in the collateral Margin refulting from every Quantity, no more are to be added on the right Hand, than there are Degrees of Dimenfion in the higheft Term required in the Quote, above the Degrees of that firft refulting Term.

and Infinite Series.

As in the prefent Example, if I defir'd that the Quote, (or the Species x in the Quote, fhould afcend no higher than to four Dimenfions, 1 omit all the Terms after x^{4}, and put only one after x^{3} : Therefore the Terms after the Mark * may be conceived to be expung'd. And thus the Work being continued till at laft we come to the Terms $\frac{15 x^{4}}{4096 a}$ $-\frac{13}{13} \frac{3}{8} x^{3}+4 a^{2} r-\frac{1}{2} a x r$, in which p, q, r, or $s, \mathcal{E} c$. reprefenting the Supplement of the Root to be extracted, are only of one Dimenfion; we may find as many Terms $\left(+\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{16384^{4}}\right)$ by Divifion, as we fhall fee wanting to compleat the Quote. So that at laft we fhall have $y=a-\frac{x}{4} x+\frac{x x}{64 a}+\frac{131 x^{3}}{512 a^{2}}$ $+\frac{509 x^{4}}{16384^{3}}, \xi c$.

For the fake of farther Illuftration I fhall propofe another Example to be refolv'd. From the Equation $\frac{1}{5} y^{5}-\frac{1}{4} y^{4}+\frac{x}{3} y^{3}-\frac{1}{2} y^{2}-1-y-z=0$, let the Quotient be found only to the fifth Dimenfion, and the fuperfluous Terms be rejected after the Mark, Ėc.

$z+p=y$	+ ${ }^{\frac{1}{5} y^{5}}$	+ $\frac{1}{5} z^{5}, \varepsilon^{\circ} \mathrm{c}$.
	- $\frac{1}{7} y^{4}$	${ }^{-1} z^{4}-z^{3} p$, \%
		+ ${ }^{\frac{1}{3} z^{3}+z^{2} p+z p^{2}}$
	+ y	+z +-p
	-z	-z
$\frac{1}{2} z^{2}+q=1$	+zp ${ }^{2}$	
	- ${ }^{\frac{1}{2} p^{2}}{ }^{2}$	-
	+ $z^{2} p$	$+_{\frac{1}{2} z^{4}+z^{2} q}$
	-zp	$-\frac{1}{2} z^{3}-z q$
	+p	$\frac{1}{1} z^{2} z^{2}+q$
	士- $\frac{1}{\frac{1}{4} z^{5}}$	
	+ ${ }^{\frac{1}{3} z^{3}}$	+ ${ }_{3}^{4} 3^{\frac{1}{3}}$
	- ${ }^{\frac{3}{2} 2} z^{2}$	- ${ }_{-2}{ }^{1} z^{2}$

And thus if we propore the Equation $\frac{63}{28^{16}} y^{15}$ $+\frac{35}{15} y^{9}+\frac{5}{112} y^{7}+\frac{3}{40} y^{5}+\frac{1}{6} y^{3}+y-z=0$ to be refolv'd only to the ninth Dimenfion of the Quote, before the work begins we may reject the Term $\frac{63}{2} \frac{3}{816} y^{15}$; then as we operate we may reject all the Terms beyond z^{9}, beyond z^{7} we may admit but one, and two only after z^{5}; becaufe we may obferve that the Quote ought always to afcend by the interval of two Units in this manner z, z^{3}, $z^{5}, \mathcal{E}^{\circ} c$. Then at laft we fhall have $y=z-\frac{1}{6} z^{3}$

And hence an Artifice is difcover'd, by which Equations, though affected in infinitum, and confifting of an infinite Number of Terms, may however be refolved. And that is, before the Work begins all the Terms are to be rejected, in which the Dimenfion

Dimenfion of the indefinitely fmall Species not affected by the radical Species exceeds the greateft Dimenfion required in the Quote; or from which by fubftituting, inftead of the radical Species, the firft Term of the Quote found by the Parallelogram as before, none but fuch exceeding Terms can arife. Thus in the laft Example, I fould have omitted all the Terms beyond y^{9}, tho' they went on ad infinitum. And fo in this Equation

$$
0=\left\{\begin{array}{l}
-8 \frac{1}{1} z^{2}-4 z^{4}+9 z^{6}-16 z^{8}, \varepsilon^{2} c . \\
\frac{1}{2} z^{2}-2 z^{4}+3 z^{6}-4 z^{8}, \\
\frac{y^{2}}{}{ }^{2} \text { in } z^{2}-z^{4}+z^{6}-z^{5}, \\
+y^{3} \text { in } z^{2}-\frac{1}{2} z^{4}+\frac{1}{3} z^{6}-\frac{1}{4} z^{3}, \\
\xi^{c} c .
\end{array}\right.
$$

that the Cubic Root may be extracted only to four Dimenfions of z, I omit all the Terms in infinitum beyond $\frac{1}{4} y^{3}$ in $z^{2}-\frac{1}{2} z^{4}-\frac{1}{8} z^{6}$, and all beyond $-y^{2}$ in $z^{2}-z^{4}+z^{6}$, and all beyond $+y$ in $z^{2}-2 z^{4}$, and beyond $-8+-z^{2}-4 z^{4}$. And therefore I affume this Equation only to be refolved $\frac{1}{3} z^{6} y^{3}-\frac{1}{2} z^{4} y^{3}+z^{2} y^{3}-z^{6} y^{2} \frac{1}{1} z^{4} y^{2}-z^{2} y^{2}-$, $2 z^{4} y+z^{2} y-4 z^{4}+z^{2}-8=0$ becaufe $2 z-{ }^{\frac{2}{3}}$ (the firft Term of the Quote) being fubftituted inftead of y in the reft of the Equation depreffed by $z^{\frac{2}{3}}$ gives every where more than four Dimenfions.

What I have faid of higher Equations may alfo be applied to Quadraticks. As if I defir'd the Root of this Equation

$$
0=\left\{\begin{array}{l}
y^{2} \\
y \text { in } a+x+\frac{x^{2}}{a}+\frac{x^{3}}{a^{2}}-\frac{x^{4}}{a^{3}}, \forall c . \\
+\frac{x^{4}}{4 a^{2}}
\end{array}\right.
$$

as far as the Period x^{6}. I omit all the Terms in $i n$ finitum beyond $-y$ in $a+x+\frac{x^{2}}{a}$, and affume only this Equation $y^{2}-a y-x y-\frac{x^{2}}{a} y+1-\frac{x^{4}}{4 a^{2}}=0$. This I refolve either in the ufual manner by making $y=\frac{1}{2} a$

20. Of tbe Method of Fluxions

 $-1 \frac{1}{2} x+\frac{x^{2}}{2 a}-\sqrt{\frac{1}{4} a^{2}-1 \frac{1}{2} a x+\frac{3}{4} x^{2}+\frac{x^{3}}{2 a}}$; or more exprefsly by the Method of affected Equations delivered before, by which we fhall have $y=\frac{x^{4}}{4^{3}}-$ $\frac{x^{3}}{4 a^{*} *} *$, where the laft required Term vanifhes or becomes equal to nothing.Now atter that Roots are extracted to a convenient Period, they may fometimes be continued at pleafure only by obferving the Analogy of the Series. So you may for ever continue this $z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\frac{1}{2} z^{4}+\frac{1}{1} z^{5}$, (which is the Root of the infmite Equation $z=y+\frac{1}{2} y^{2}+-\frac{x}{3} y^{3}$ $+\frac{1}{4} y^{4}, \mathcal{E}^{\circ}$ c.) by dividing the laft Term by thefe Numbers in order, 2, 3, 4, 5, 6, ©c. And
 may be continued by dividing by thefe Numbers $2 \times 3,4 \times 5,6 \times 7,8 \times 9, \mathcal{E}^{3} c$. Again the Series $0_{0}^{a}+\frac{x^{2}}{2 a}-\frac{x^{4}}{8 a^{3}}+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{3}}{128 a^{7}}, \delta^{2}$ c. may be continued at pleafure, by multiplying, the Terms refpectively by thefe Fractions, $\frac{1}{2},-\frac{1}{4},-\frac{3}{6},-\frac{5}{5}$, , $\frac{7}{10}, \xi^{2} c$. And fo of others.

But in difcovering the firft Term of the Quotient, or fometimes the fecond or third, there may ftill remain a dificulty to be overcome; for its Value fought for as before, may happen to befurd, or the inextricable Root of an high affected Equation. Which when it happens, provided it be not alfo impoffible, you may reprefent it by fome Letter, and then proceed as if it were known, as in the Example $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$, if the Root of this Equation $y^{3} \frac{1}{2} a^{2} y-2 a^{3}$ had been furd or unknown, I fhould have put any Letter b for it, and then have perform'd the Refolution as follows; fuppore the Quote found only to the third Dimenfion.

Here writing b in the Quote, I fuppofe $b+p$ $=y$, and then for y I fubftitute as you fee, whence proceeds $p^{3}+3 b p^{2}, \varepsilon^{2} c$. rejecting the Terms $b^{3}+$ $a^{2} b-2 a^{3}$ as being equal to nothing: for b is fuppofed to be a Root of this Equation $y^{3}+a^{2} y-2 a^{3}$ $=0$. Then the Terms $3 b^{2} p+a^{2} p+a b x$ give $\frac{-a b x}{3 b^{2}+a^{2}}$ to be fet in the Quote, and $\frac{-a b x}{a^{2}+3 b^{2}}+q$ to be fubftituted for p. But for brevity's fake I write c for $a a+3 b b$, yet with this caution, that $a a \frac{1}{1}$ $3 b^{2}$ may be rettored whenfoever I perceive that the Terms may be abbreviated by it. When the Work is finif'd I affume fome Number for a and refolve this Equation $y^{3}+a^{2} y-2 a^{3}=0$, as is Sewn above concerning numeral Equations; and I fubftitute for b any one of its Roots if it has three Roots; or rather I free fuch Equations from Spe- Species, and that after the manner before infinuated; and for the reft only, if any remain that cannot be expung'd, I put Numbers. Thus $y^{3}+a^{2} y-2 a^{3}$ $=0$ will be freed from a by dividing the Root by a, and it will become $y^{3}+y-2=0$, which Root being found, and multiply'd by a, mut be fubftitufted instead of b.

Hitherto I have fuppos'd the indefinite Species to be little; but if it be fuppos'd to approach nearly to a given Quantity, for that indefinitely fall Difference I put forme Species, and that being fubftitoted I folve the Equation as before. Thus in the Equation $\frac{1}{5} y^{5}-\frac{x}{4} y^{4}+\frac{x}{3} y^{3}-\frac{1}{2} y^{2}+y+a-x=0$, it being known or fuppos'd that x is nearly of the fame Quantity as a, I fuppofe z to be their Difference; and then writing $a+z$ or $a-z$ for x, there will arife $\frac{x}{5} y^{5}-\frac{x}{4} y^{4}+\frac{1}{3} y^{3}-\frac{1}{2} y^{2}+y^{+} z=0$, which may be refolv'd as before.

But if that Species be fuppos'd to be indefinitely great, for its reciprocal which will therefore be indefinitely little, I put forme Species, which being fubftituted, I proceed in the Refolution as before. Thus having $y^{3}+y^{2}-1-y-x^{3}=0$ where x is known or fuppos'd to be very great, for the rectprocally little Quantity $\frac{1}{x} \mathrm{I}$ put z, and fubftituting $\frac{1}{z}$ for x, there will arife $y^{3}-1-y^{2}+y-\frac{1}{z^{3}}=0$, whore Root is $y=\frac{x}{2}-\frac{1}{3}-\frac{2}{5} z+\frac{y}{81} z^{2}+\frac{5}{87} z^{3}, \mathcal{E}^{2} c$. where x being reftored, if you pleafe, it will be $y=x-\frac{1}{3}$ $-\frac{2}{0^{x}}+\frac{7}{81 x^{2}}+\frac{5}{81 x^{3}}, E^{2} c$.

If it Should happen that none of the fe Expedients fhould fucceed to your defire, you may have recourfe to another. Thus in the Equation $y^{4}-x^{2} y^{2}$ $+x y^{2}+2 y^{2}-2 y+1=0$, whereas the firft Term ought to be obtain'd from the Suppofition that y^{4}
$\frac{1}{1} 2 y^{2}$
Root As yo from. for x and th pole :
have?
for th prose may If sal w
Quin lies ir bleb b which ion
$+a$ and t city
or
of the
perha ring
fides that
may
differ
fictit
$a z+$
as be
Bu
be m
$\frac{1}{2} 2 y^{2}-2 y \frac{1}{1} 1=0$, which yet admits of no poffible Root; you may try what can be done another way. As you may fuppofe that x is but little different from $+^{2}$, or that $2+z=x$; then fubftituting $2+z$ for x, there will arife $y^{4}-z^{2} y^{2}-3 z y^{2}-2 y+1=0$, and the Quote will begin from +1 ; or if you fuppofe x to be indefinitely great, or $\frac{1}{x}=z$, you will have $y^{4}-\frac{y^{2}}{z^{2}}+\frac{y^{2}}{z}+2 y^{2}-2 y+1=0$, and $+z$ for the initial Term of the Quote. And thus by proceeding according to feveral Suppofitions, you may extract and exprefs Roots after various ways. If you fhould defire to find how many feveral ways this may be done, you muft try what Quantities, when fubftituted for the indefinite Species in the propos'd Equation will make it divifible by $y,+$ or - fome Quantity, or by y alone; which for Example fake will happen in the Equation $y^{3}+a x y+a^{2} y-x^{3}-2 a^{3}=0$, by fubftituting $+a$, or $-a$, or $-2 a$, or $\overline{-\left.2 a^{3}\right|^{\frac{1}{3}}}$, Eec. inftead of x : and thus you may conveniently fuppofe the Quantity x to differ little from $+a$, or $-a$, or $-2 a$, or $\left.-2 a^{3}\right]^{\frac{1}{3}}$; and thence you may extract the Root of the Equation propofed after fo many ways; and perhaps alfo after as many other ways, fuppofing the fe differences to be indefinitely great. Befides if you take for the indefinite Quantity this or that of the Species which exprefs the Root, you may perhaps obtain your defire after fome other different ways: and farther ftill by fubftituting any fictitious Value for the indefinite Species, fuch as $a z+b z^{2}, \frac{a}{b+z}, \frac{a+c z}{b+z}, \mathcal{E}^{2} c$. and then proceeding as before in the Equations that will refult.

But now that the Truth of thefe Conclufions may be manifeft, i.e. that the Quotes thus extracted Root of the Equation, as at laft to differ from' it by lefs than any affignable Quantity, and therefore when infinitely continued do not at all differ from it: You are to confider that the Quantities in the left Hand Column of the right Hand Side of the Tables are the laft Terms of the Equations whofe Roots are $p, q, r, s, \mathcal{E}^{\circ} c$. and that as they vanifh, the Roots $p, q, r, s, \mathcal{E}^{2} c$. i.e. the Differences between the Quote and the Root fought, do likewife vanifh at the fame time; fo that the Quote will not then differ from the true Root: Wherefore at the beginning of the Work if you fee that the Terms in the faid Column will all deftroy one another, you may conclude that the Quote fo far extracted is the perfect Root of the Equation. But if it be otherwife, you will fee however that the Terms in which the indefinitely fmall Species is of few Dimenfions, that is, the greateft Terms, are continually taken out of that Column, and that at laft none will remain there, unlefs fuch as are lefs than any given Quantity, and therefore not greater than nothing when the Work is continued ad infnitum. So that the Quote, when infinitely extracted, will at laft be the true Root.

Laftly, Although the Species which for the fake of Perfpicuity I have hitherto fuppos'd to be indefinitely little, fhould however be fuppos'd to be as great as you pleafe, yet the Quotes will ftill be true, though they may not converge fo faft to the true Root ; this is manifert from the Analogy of the thing. But here the Limits of the Roots or the greateft and leaft Quantities come to be confider'd; for thefe Properties are in common both to finite and infinite Equations. The Root in thefe is then greateft or leaft, when there is the greateft or leaft Difference between the Sums of the affirmative Terms and of the negative Terms; and is
limited when the indefinite Quantity, (which therefore not improperly I fuppos'd to be fmall, cannot be taken greater, but that the Magnitude of the Root will immediately become infinite, that is, will become impoffible.

To illuftrate this, let ACD be a Semicircle defrrib'd on the diameter $A D$ and $B C$ an ordinate. Make $\mathrm{AB}=x$, $\mathrm{BC}=y, \mathrm{AD}=a$. Then $y=\sqrt{a x-x^{2}}=\sqrt{ } a x-\frac{x}{2 a}$ $\sqrt{ } a x-\frac{x^{2}}{8 a^{2}} \sqrt{ } a x, \mathcal{E}^{2}$. as before. Therefore BC or y then becomes greateft,
 when the $\sqrt{ }$ ax moft exceeds all the terms $\frac{x}{2 a} \sqrt{ } a x+\frac{x^{2}}{8 a^{2}} \sqrt{ } a x, \mathcal{E}^{\circ} c$. that is, when $x=\frac{1}{2} a$, but it will be terminated when $x=a$: for if we take x greater than a, the fum of all the terms $-\frac{x}{2 a} \sqrt{ } a x,-\frac{x^{2}}{8 a^{2}} \sqrt{ } a x, E^{2} c$. will be infinite. There is another limit alfo when $x=0$, by reafon of the impoffibility of the radical $\sqrt{-a x}$; to which terms or limits the limits of the femicircle A, B, and D, are correfpondent.

Tranjution to the Mettod of Fluxions.

And thus much for the Methods of Computation, of which I fhall make frequent ufe in what follows. Now it remains, that for an illuftration of the Analytic Art, I fhould give fome fpecimens of Problems, efpecially fuch as the nature of Curves will fupply. Now in order to this, I fhall obferve that all the difficulties hereof may be reduced to thefe two Problems only, which I fhall propofe, concerning a Space defcrib'd by local Motion, any how accelerated or retarded. E

Of the Method of Fiuxions

1. 'The length of the Space defcrib'd being continually (that is, at all times) given; to find the velocity of the motion at any time propos'd.
II. The velocity of the motion being continually given; to find the length of the Space defcrib'd at any time propos'd.

Thus in the Equation $x x=y$, if y reprefents the length of the Space at any time defcrib'd, which (time) another Space x, by increafing with an uniform celerity \dot{x}, meafures and exhibits; as defcrib'd: then $2 \times x$ will reprefent the celerity, by which the Space y at the fame moment of time procesds to be defcrib'd, and contrariwife. And hence it is, that in what follows I confider things as generated by continual Increafe, after the manner of a Space, which a thing or point in motion defcribes.

But fince we do not confider the time here, any farther than as it is expounded and meafured by an equable local motion; and befides whereas things only of the fame kind can be compar'd together, and alfo their velocities of increafe and decreafe : therefore in what follows I fhall have no regard to time formally confider'd, but fhall fuppole fome one of the quantities propos'd, being of the fame kind, to be increas'd by an equable Fluxion, to which the reft may be refer'd, as it were to time; and therefore by way of analogy it may not improperly receive the name of Time. Whenever therefore the word Time, occurs in what follows, (which for the fake of perfpicuity and diftinction I have fometimes ufed,) by that word I would not have it underttood as if I meant Time in its formal acceptation, but only that other quantity, by the equable increafe or fluxion whereof, Time is expounded and meafured.

and Infinite Series.

Now thofe quantities which I confider as gradually and indefinitely increafing, I thall hereafter call Fluents, or flozeing quanities, and fhall repres fent them by the final letters of the alphabet v, x, y, and z; that I may diftinguifh them from other quantities, which in equations may be confidered as known and determinate, and which therefore are reprefented by the initial letters a, b, $c, \xi^{\circ} c$. And the velocities by which every Fluent is increafed by its generating motion (which I may call Fluxions, or fimply Velocities, or Celerities,) I fhall reprefent by the fame letters pointed thus, \dot{v}, \dot{x}, \dot{y}, and \dot{z}; that is, for the celerity of the quantity v I fhall put \dot{v}, and fo for the celerities of the other Quantities x, y, and z, I fhall put \dot{x}, \dot{y}, and \dot{z}, refpectively. Thefe things being premis'd, I fhall now forthwith proceed to the matter in hand; and firft I fhall give the folution of the two Problems juft now propos'd.

ProblemI.

The Relation of the flowing Quantities to one another. being given, to determine the Relation of their $V e$ locities.

Solution. Difpofe the equation, by which the given Relation is exprefs'd, according to the dimenfions of fome one of its flowing Quantities, fuppofe x, and multiply its terms by any arithmetical progreffion, and then by $\frac{x}{x}$; and perform this operation feparately for every one of the flowing Quantities. Then make the fum of all the products equal to nothing, and you will have the equation required.

Example i. If the relation of the flowing quantities x and y be $x^{3}-a x^{2}+a x y-y^{3}=0$; firft difpofe the terms according to the dimenfions of x, and then according to y, and multiply them in the following manner.
Mult. $x^{3}-a x^{2}+a x y-y^{3} \mid-y^{3}+a x y-a x^{2}$

by $\frac{3 \dot{x}}{x} \cdot \frac{2 \dot{x}}{x} \cdot \frac{\dot{x}}{x} \cdot 0$	$\frac{3 \dot{y}}{y} \cdot \frac{\dot{y}}{y} \cdot 0$
$-3 y^{2}+a \dot{y} x$	$*$

Ex. 2. If the relation of the quantities x, y, and z, be exprefs'd by the equation $2 y^{3}-1 x^{2} y$ $-2 c y z+3 y z^{2}-z^{3}=0$,

Wherefore the relation of the celerities of flowing, or of the Fluxions \dot{x}, \dot{y}, and \dot{z}, is $4 y y^{2}+\frac{y z^{3}}{y}+2 x x y$ $3 \dot{z} z^{2}-1-6 \dot{z} z y-2 c z \dot{z} y=0$

But fince there are here three flowing quantities x, y, and z, another equation ought alfo to be given, by which the relation among them, as alfo among their Fluxions, may be entirely determined. As if it were fuppos'd that $x+y-z=0$. From hence another relation among the Fluxions $\dot{x}+\dot{y}$ $-\dot{z}=0$ would be found by this rule. Now compare thefe with the foregoing equations, by expunging any one of the three Quantities, and alfo any one of the Fluxions, and then you will obtain an equation which will entirely determine the relation of the reft.
In the equation propos'd, whenever there are complex fractions or furd quantities, I put.fo many letters for each, and fuppofing them to reprefent flowing quantities, I work as before. Afterwards I fupprefs and exterminate the affum'd letters, as you fee done here.

Ex. 3. If the relation of the quantities x and y be $y y-a a-x \sqrt{a a-x x}=0$, for $x \sqrt{a^{2}-x^{2}}$ I write z, and thence I have the two equations $y y-a a-z=0$, and $a^{2} x^{2}-x^{4}-z^{2}=0$, of which the firft will give $2 y y-\dot{z}=0$ as before, for the relation of the celerities \dot{y} and \dot{z}, and the latter will give $2 a^{2} \dot{x} x-4 \dot{x} x^{3}-2 \dot{z} z=0$, or $\frac{a^{2} \dot{x} \dot{x}-2 \dot{x} x^{3}}{z}=\dot{z}$, for the relation of the celerities \dot{x} and \dot{z}. Now \dot{z} being expunged, it will be $2 \dot{y} y \frac{-a^{2} \dot{x} x+2 \dot{x} x^{3}}{z}=0$, and then reftoring $x \sqrt{a^{2}-x^{2}}$ for z, we fhall have $2 y y$ $\frac{-a^{2} \dot{x}+2 \dot{x} x^{2}}{\sqrt{a^{2}-x^{2}}}=0$, for the relation between \dot{x} and y as was required.

$$
\text { Ex. } 4
$$

Of the Method of EIUXIONS

Ex. 4. If $x^{3}-a y^{2}+\frac{b y^{3}}{a+y}-x x \sqrt{a y+x x}=0$, expreffes the relation that is between x and $y: I$ make $\frac{b y^{3}}{a+y}=z$, and $x x \sqrt{a y+x^{2}}=v$, from whence I hall have the three equations $x^{3}-a y^{2}+z-v=0$, $a z+y z-b y^{3}=0$, and $a x^{4} y+x^{6}-v u=0$. The firft gives $3 \dot{x} x^{2}-2 a y y+z-\dot{v}=0$, the fecond gives \dot{a} $+z y+y z-3 b y y^{2}=0$, and the third gives $4 a \dot{x} x^{3} y$ $+6 \dot{x} x^{5}+\dot{a} y x^{4}-2 \dot{v} v=0$, for the relations of the velocities $\dot{v}, \dot{x}, \dot{y}$, and \dot{z}; but the values of \dot{z} and \dot{v}, found by the fecond and third equations, (i.e. $\frac{3 \dot{b y y^{2}}-\dot{y z}}{a+y}$ for \dot{z}, and $\frac{4 a \dot{x} x^{3} y+6 \dot{x} x^{5}+a y \dot{x}^{4}}{2 v}$ for $\left.\dot{v}\right)$ I fubflitute in the firft equation, and there arifes $3 \times x^{2}$ $-2 a \dot{y} y+\frac{3 b \dot{b y} y^{2}-\dot{z} z}{a+y}-\frac{4 a \dot{x} x^{3} y-6 \dot{x} x^{5}-a y x^{4}}{2 \dot{v}}=0$; then inftead of z and v, reftoring their values $\frac{b y^{3}}{a-y}$ and $x x \sqrt{a y+x^{2}}$, there will arife the equation fought $3 \dot{x} x^{2}-2 a y y \frac{+3 a b y y^{2}+2 b y y^{3}}{a a+2 a y+y}-\frac{4 a x x y-6 \dot{x} x^{3}-a y x x}{2 \sqrt{a y+x x}}=0$,
by which the relation of the velocities x and y will be expreffed.

After what manner the operation is to be perform'd in other cafes, I believe is manifeft from hence; as when in the equation propos'd there are found furd denominators, cubic radicals, radicals within radicals as $\sqrt{a x+\sqrt{a a-x}}$, or any other complicate terms of the like kind.

Furthermore, although in the equation propos'd there fhould be quantities involv'd, which cannot be determin'd or exprefs'd by any geometrical method, fuch as curvilinear areas, or the
lengths of curve-lines, yet the relations of their Fluxions may be found, as will appear from the following example.

Preparation for Example 5.

Suppofe BD to be an ordinate at right angles to AB , and that ADH be any curve which is defin'd by the relation between A B and BD exhibited by an equation. Let AB be called x, and the area of the curve ADB, apply'd to unity, be called z. Then erect the perpendicular AC equal to unity, and through Cdraw
 CE parallel to AB and meeting. BD in E . Then conceiving thefe two fuperficies ADB and ACEB to be generated by the motion of the right line BED; it is manifeft that their Fluxions (i.e. the Fluxions of the quantities $1 \times z$ and $\mathrm{I} \times x$, or of the quantities z and x) are to each other as the generating lines BD and BE . Therefore $\dot{z}: \dot{x}:$: $\mathrm{BD}: \mathrm{BE}$ or I , and therefore $z=x \times \mathrm{BD}$. And hence it is that z may be involv'd in any equation expreffing the relation between x and any other flowing quantity y; and yet the rellation of the Fluxions x and y may however be difcover'd.

Ex. 5. As if the equation $z z+a x z-y^{4}$ $=0$ were propos'd to exprefs the relation between x and y, as alfo $\sqrt{a x-x x}=\mathrm{BD}$ for determining a curve, which therefore will be a Circle. The equation $z z+a x z-y^{4}=0$, as before, will give $2 \dot{z z}$ $+a z x+a x z-4 y y^{3}=0$ for the relation of the celerities \dot{x}, \dot{y}, and \dot{z}. And therefore fince it is \dot{z}

3^{2} Of the Metbod of FLuxions

$=x \times \mathrm{BD}$, or $=x \sqrt{a x-x x}$, fubtitute this value inftead of it, and there will arife the equation $\overline{2 x z+\operatorname{tax} x} \sqrt{a x-x x}+a x z-4 y y^{3}=0$, which determines the relation of the celerities \dot{x} and \dot{y}.

Demonstration of the Solution.

The Moments of flowing quantities (i.e. their indefinitely fmall parts, by the acceffion of which, in indefinitely fmall portions of time they are continually increas'd) are as the velocities of their flowing or increafing. Wherefore if the moment of any one, as x, be reprefented by the product of its celerity \dot{x} into an indefinitely fmall quantity 0 , (i.e. by $\dot{x} 0$,) the moments of the others v, y, and z, will be reprefented by vo, $\dot{y} 0, z \dot{z}$; becaufe $\dot{v o}, \dot{x} 0, \dot{y} 0$, and \dot{z}, are to each other as $\dot{v}, \dot{x}, \dot{y}$, and \dot{z}. Now fince the moments, as $x 0$ and $y 0$, are the indefinitely little acceffions of the flowing quantities x and y, by which thofe quantities are increafed through the feveral indefinitely fmall intervals of time; it follows that thofe quantities x and y after any indefinitely fmall interval of time, become $x+x_{0}$ and $y+y_{0}$: and therefore the equation which at all times indifferently expreffes the relation of the flowing quantities, will as well exprefs the relation between $x+x 0$ and $y+j 0$, as between x and y : fo that $x+x 0$ and $y \frac{1}{1} y o$, may be fubitituted in the fame equation for thofe quantities, inftead of x and y.

Therefore let any equation $x^{3}-a x^{2}+-a x y-y^{5}=0$ be given, and fubftitute $x+x 0$ for x, and $y+y o$ for y, and there will arife

$$
\begin{aligned}
& x^{3}+3 x 0 x^{2}+3 \dot{x}^{2} 00 x+\dot{x}^{3} 0^{3} \\
& -a x^{2}-2 a x o x-a x^{2} 00 \\
& \text { +axy+axoy+ayox+axy00} \\
& -y^{3}-3 y^{3} 0 y^{2}-3 y^{2} 00 y-y^{3} 0^{3}=0 .
\end{aligned}
$$

Now by fuppofition $x^{3}-a x^{2}+a x y-y^{3}=0$; which therefore being expung'd, and the remaining terms divided by 0 , there will remain $3 x x^{2}+$ $3 \dot{x}^{2} 0 x+\dot{x}^{3} 00-2 a \dot{x} x-a \dot{x}^{2} 0+a \dot{x} y+a y x+a \dot{x} 0-3 y y^{2}$ $-3 y^{2} 0 y-y^{3} 00=0$. But whereas 0 is fuppos'd to be indefinitely little, that it may reprefent the moments of quantities, confequently the terms that are multiplied by it, will be nothing in refpect of the reft: therefore I reject them, and there remains $3 x^{2} \dot{x}-2 a x x+a x y \frac{1}{1} a j x-3 y y^{2}=0$, as above in Example I .

Here it may be obferved, that the terms which are not multiplied by o will always vanifh; as alfo thofe terms that are multiplied by more than one dimenfion of 0 ; and that the reft of the terms being divided by 0 , will always acquire the form that they ought to have by the foregoing rule. Q . E. D.

This being done the other things inculcated in the rule will eafily follow. As that in the propos'd equation, feveral flowing quantities may be involv'd; and that the terms may be multiply'd, not only by the number of the dimenfions of the flowing quantities, but alfo by any other arithmetick progreffion, fo that in the operation there may be the fame difference of the terms according to any of the flowing quantities, and the progreffion be difpos'd according to fome order of the dimenfions of each of them. Thefe things being allow'd, what is taught befides in Examples 3, 4, and 5, will be plain enough of itfelf.

Problem II.

An Equation being propos'd including the Fluxions of Quantities, to find the Relation of thofe Quantities to one another.

A particular Solution.

As this problem is the converle of the forego: ing, it muft be folv'd by proceeding in a con: trary manner; that is, the terms multiply'd by \dot{x} being difpos'd according to the dimenfions of x, they muft be divided by $\frac{x}{x}$, and then by the number of their dimenfions, or by fome o ther arithmetical progreffion. Then the fame work mult be repeated with the terms multiplied by \dot{v}, \dot{y}, and \dot{z}, and the fum refulting muft be put equal to nothing, rejecting the terms that are redundant.

Example. Let the equation propos'd be $3 \dot{x} x^{2}$ $-2 a \dot{x} x+a x y-3 y y^{2}+a y x=0$, the operation will be after this manner.

Divide $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y$ Divide $-3 \dot{y} y^{2} *+a \dot{y} x$ by $\frac{x}{x}=3 x^{3}-2 a x^{2}+a y x$ by $\frac{y}{y}=-3 y^{3} *+a x y$ $\frac{\text { div. by } 3 \cdot 2 \cdot 1}{\text { Quote } x^{3}-a x^{2}+a y x} \left\lvert\, \frac{\text { div. by } 3 \cdot 2 \cdot 1}{\text { Quote }-y^{3} * \frac{1}{1} a x y}\right.$

Therefore the fum $x^{3}-a x^{3}+a x y-y^{3}=0$ will be the required relation of the Quantities x and y. Where 'tis to be obferv'd, that tho' the term axy occurs twice, yet I do not put it twice in the funs $x^{3}-a x^{2}+a x y-y^{3}=0$; but I reject the redun-

and Infinite Series?

35
dant term. And fo whenever any term occurs twice, or ofner, (as in cafes when there are feveral flowing quantities concerned;) it muft be wrote only once in the fum of the terms.
There are fome other circumftances to be obferv'd, which I fhall leave to the fagacity of the Arcift; for it would be needlefs to dwell long upon this matter, fince the Problem cannot always be folved by this artifice. I fhall add however, that after the relation of the Fluents is obtained by this method, if we can return, by Prob. I. to the propos'd equation involving the Fluxions, then the work is right, otherwife not. Thus, in the example propos'd, after I have found the equation $x^{3}-a x^{2}+a x y-y^{3}=0$; if from thence 1 feek the relation of the Fluxions \dot{x} and \dot{y} by the firft Problem, I fhall arrive to the propos'd equation $3 x \times x^{2}$ $-2 a \dot{x} x+a x y+a y x-3 y y^{2}=0$: whence it is plain that the equation $x^{3}-a x^{2}+a x y-y^{3}=0$ is rightly found. But if the equation $x x-x y+a y=0$ were propos'd, by the prefcrib'd method 1 fhould obtain this $\frac{1}{2} x^{2}-x y-1-a y=0$ for the relation between x and y; which conclufion would be erroneous, fince by Prob. I. the equation $x x-x y$ $y x-1-a y=0$ would be produced, which is different from the former equation. Having therefore propos'd this in a perfunctory manner, I hall now undertake the general Solution.

Preparation for the general Rule.

Firf it muft be obferved, that in the propos'd equation, the fymbols of the Fluxions (fince they are quantities of a different kind from the quantities of which they are the Fluxions) ought to afcend in every term to the fame number of dimen-
fions; and when it happens otherwife, another Fluxion of fome flowing quantity muft be underfood to be unity, by which the lower terms are continually to be multiplied, till the fymbols of the Fluxions arife to the fame number of dimenfions in all the terms. As if the equation $x+x y x-a x x=0$ were propos'd, the Fluxion \dot{z} of fome third flowing quantity z muft be underfood to be unity, by which the firft term \dot{x} muft be multiplied once, and the laft $a x x$ twice; that the Fluxions in them may afcend to as many dimenfions, as in the fecond term $x \dot{y} x$; as if the propos'd equation had been deriv'd from this $\dot{x} \dot{z}+\dot{x} y x-a \dot{z} z x^{2}=0$ by putting $z=\mathrm{r}$. And thus in the equation $j x=y y, I$ ought to imagine x to be unity, by which the term $y y$ is to be multiplied.

Now equations, which have only two flowing quantities, that every where rife to the fame number of dimenfions, may always be reduced to fuch a form, as that on one fide may be had the ratio of the Fluxions, (as $\frac{y}{x}$, or $\frac{x}{y}$, or $\frac{z}{x}$, \mathcal{E}°.) and on the other fide the value of that ratio exprefled by fimple algebraic terms: as you may fee here $\frac{y}{x}=2+2 x-y$: and when the foregoing particular folution will not take place, it is requir'd that I fhould bring the equation to this form.

When in the value of that Fluxion any term is denominated by a compound equation, or a radical, or if that Fluxion be the root of an affected equation, the reduction muft be perform'd either by divifion or by extraction of roots, or by the refolution of an affected equation as has been before thewn.

So if the equation $y a-j x-\dot{x} a+\dot{x} x-\dot{x} y=0$ were propos'd. Firft by reduction, this becomes $\frac{y}{x}=1$ $\frac{y}{a-x}$; or $\frac{\dot{x}}{y}=\frac{a-x}{a-x+y}$: And in the firft cafe, if I reduce the term $\frac{y}{a-x}$, denominated by the compound quantity $a-x$, to an infinite feries of fimple terms $\frac{y}{x}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a^{4}}, \delta^{2} c$. by dividing the numerator y by the denominator $a-x$, I hall have $\frac{\dot{y}}{\dot{x}}=1+\frac{y}{x}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a^{4}}, \varepsilon \Xi c$. by the help of which the relation between x and y may be determined. So the equation $y y=x y+x x x x$ being given, or $\frac{\ddot{y y}}{\ddot{x} x}=\frac{y}{\dot{x}}+x x$, and by a farther reduction $\frac{\dot{y}}{\dot{x}}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+x x}$, I extract the fquare soot out of the terms $\frac{1}{4}+x x$, and obtain the infinite feries $\frac{1}{2}+x^{2}-x^{4}+2 x^{6}+5 x^{8} \frac{1}{1} 14 x^{10}, E^{3} c$. which if I fubftitute for $\sqrt{\frac{1}{+}+x x}$, I hall have $\frac{y}{x}=\mathbf{I}$ $\frac{1}{1} x^{2}-x^{4}+2 x^{6}-5 x^{3}$, छुc. or $\frac{y}{x}=-x^{2}+x^{4}-$ $2 x^{6}+5 x^{8}, \delta^{2} c$. according as the $\sqrt{+x x}$ is either added to $\frac{1}{2}$, or fubftracted from it. And thus if the equation $\dot{y}^{3}+a x \dot{x}^{2} \dot{y}+a^{2} \dot{x}^{2} \dot{y}-x^{3} \dot{x}^{3}-2 \dot{x}^{3} a^{3}$ $=0$ were propos'd, or $\frac{y^{3}}{\dot{x}^{3}}+a x \frac{y}{x}-1-a^{2} \frac{y}{x}-x^{3}-$ $2 a^{3}=0$, I extract the root of this affected cubick equation, and there arifes $\frac{y}{x}=a-\frac{x}{4}+\frac{x x}{64 a}+$

Of the Metbod of Fluxions

$\frac{131 x^{3}}{512 a^{2}}+\frac{509 x^{4}}{1633^{4}+4^{3}}, \mho^{\circ} c$. as may be feen before.
But here it may be obferv'd, that I look upon thofe terms only as compounded, which are compounded in refpect of flowing quantities; for I efteem thofe as fimple quantities which are compounded only in refpect of given quantities, fince they may be reduced to fimple quantities by fuppofing them equal to other quantities. Thus I confider the quantities $\frac{a x+b x}{c}, \frac{x}{a+b}, \frac{b c}{a x+b x}$, $\frac{b_{4}}{a x^{2}+b x^{2}}, \sqrt{a x+b x}, \mho^{3} c$. as fimple quantities, becaufe they may all be reduced to the fimple quantities $\frac{e x}{c}, \frac{x}{e}, \frac{b_{c}{ }^{2}}{e x}, \frac{b \neq}{e x^{2}}, ~ \sqrt{e x},\left(\right.$ or $\left.e^{\frac{x}{2}} x^{\frac{1}{2}},\right)$ E c. by fuppofing $a+b=e$.

Moreover, that the flowing quantities may the more eafily be diftinguifhed from one another, the Fluxion that is put in the numerator of the fraction or the Antecedent of the ratio may not improperly be called the Relate Quantity, and the other in the denominator, to which it is compared, the Correlate. Alfo the Flowing Quantities may be diftinguifhed by the fame names refpectively. And for the better underftanding of what follows, you may conceive that the correlate quantity is time, or rather any other quantity that flows equably, by which time is expounded and meafured; and that other, or the relate quantity, is $\sqrt{ }$ pace, which the moving thing or point any how accelerated or retarded defribes in that time; and that it is the intention of the Problem, that from the velocity of the motion being given at every inftant of time, the Jpace defrrib'd in the whole time may be determin'd.

But in refpect of this Problem, equations may be diftinguifhed into three orders.

1. Thofe in which two Fluxions of quantities and only one of their flowing quantities are involved.
II. Thole in which the two flowing quantities are involv'd together with their Fluxions.
III. Thole in which the Fluxions of more than two quantities are involv'd. With there premifes I foal attempt the folution of the Probelem according to there three cafes.

Solution of Case I.

Suppose the flowing quantity, which alone is contain'd in the equation, to be the correlate: and the equation being accordingly difpofed; (ie. by making on one file to be only the ratio of the Fluxions; and on the other fine the value of this ratio in Simple terms, frt multiply the value of the ratio of the Fluxions by the correlate quantity, then divide each of its terms by the number of dimenfions with which that quantity is there affected, and what afifes will be equivalent to the other flowing quantity.

So proposing the equation $y y=x y+x x x x$, I uppore x to be the correlate quantity, and the equaton being accordingly reduced, we fall have $\frac{y}{x}=$ I $+x^{2}-x^{4}+2 x^{6}$, Etc. now multiply the value of $\frac{y}{x}$ into x, and there arifes $x \frac{1}{1} x^{3}-x^{5}+2 x^{7}, \mathcal{E}^{2} c$. which terms I divide feverally by their number of dimensions, and the refult $x+\frac{\pi}{3} x^{3}-\frac{1}{5} x^{5} \frac{1}{\frac{2}{7}} x^{7}, \varepsilon^{3} c$. I put $=y$, and by this equation will be defined the relation between x and y as was required.

$$
\text { Leet the equation be } \frac{y}{x}=a-\frac{x}{4}+\frac{x x}{64 a}+\frac{131 x^{3}}{512 a^{2}}
$$

Ec. there will arife $y=a x-\frac{x^{2}}{8}+\frac{x^{3}}{19^{2 a}}+\frac{131 x^{4}}{204^{8 a^{2}}}$,

40 Of the Metbod of Fiuxions

Ec. for determining the relation between x and y.
Thus the equation $\frac{y}{x}=\frac{1}{x^{3}}-\frac{1}{x^{2}}+-\frac{a}{x_{2}^{1}}-x^{\frac{1}{2}}+x^{\frac{3}{4}}$
EC. gives $y=\frac{1}{2} x^{2}+\frac{1}{x}+2 a x^{\frac{1}{3}}-\frac{2}{3} x^{\frac{3}{2}}+\frac{2}{3} x^{\frac{3}{2}}$, छc.
for multiplying the value of $\frac{y}{x}$ into x it becomes $\frac{1}{x x}-\frac{1}{x}+a x^{\frac{1}{2}}-x^{\frac{3}{2}}+x^{\frac{5}{2}}$, Bc. or $x^{-\frac{1}{2}}-x^{-1}$ $+a x^{\frac{1}{2}}-x^{\frac{3}{2}}+a^{\frac{5}{2}}, \mho_{c}$. which ternms being divided by the number of dimenfions, the value of y will arife as before.

After the fame manner the equation $\frac{\dot{y}}{\dot{x}}=\frac{2 b^{b} c}{\sqrt{a y^{3}}}$ $+\frac{3 y^{2}}{a+b}+\sqrt{b y+y}$, gives $x=-\frac{4 b^{2} c}{\sqrt{a y}}+\frac{y^{3}}{a+b}+$ $\frac{2}{3} \sqrt{6 y^{3}+y^{3}}$; for the value of $\frac{x}{j}$ multiplied by y, there arifes $\frac{2 b^{2} c}{\sqrt{a y}}+\frac{3 y^{3}}{a+b}+\sqrt{6 b^{3}+y^{3}}$, or $2 b^{2} c a^{-\frac{1}{2}} y^{\frac{-}{2}}$ $+\frac{3}{a+b} y^{3}+\sqrt{b+c} \times y^{\frac{3}{2}}$, and thence the value of x refults by dividing by the number of the dimenfions of each term.

The equation $\frac{\dot{y}}{\dot{x}}=z^{\frac{2}{3}}$, gives $y=\frac{3}{5} z^{\frac{5}{3}}$. And $\frac{\dot{y}}{\dot{x}}$ $=\frac{a b}{c x^{\frac{1}{3}}}$, gives $y=\frac{3 a b x^{\frac{2}{3}}}{2 c}$.

But the equation $\frac{y}{\dot{x}}=\frac{a}{x}$, gives $y \frac{a}{0}$; for $\frac{a}{x} \times x$ makes a, which being divided by the number of dimenfions which is 0 , there arifes $\frac{a}{0}$, an infinite quantity, for the value of y.

and Infinite Series.

Whenever a like term fhall occur in the value of
$\frac{y}{x}$ whofe denominator involves the Correlate Quantity of one dimenfion only, inftead of the Correlate Quantity fubftitute the fum or the difference between the fame and fome other given quantity to be affumed at pleafure; for there will be the fame relation of the Fluxions of the Fluents in the equation fo produced, as of the ocher equation at firft propos'd ; and the infinite Relate Quantity by this means will be diminifhed by an infinite part of itfelf, and will become finite, but yet confifting of terms infinite in number.

Therefore the equation $\frac{y}{x}=\frac{a}{x}$ being propofed, if for x I write $b+x$, affuming the quantity b at pleafure, there will arife $\frac{y}{x}=\frac{a}{b+x}$, and by divifion $\frac{\dot{y}}{\dot{x}}=\frac{a}{b}-\frac{a x}{b^{2}}+\frac{a x^{2}}{b 3}-\frac{a x^{4}}{b 4}, \delta^{\circ} c$. And now the foregoing rule will give $y=\frac{a x}{b}-\frac{a x^{2}}{2 b^{3}}+\frac{a x^{3}}{3 b^{3}}-$ $\frac{a x^{4}}{4 b^{4}}, \xi^{6} c$. for the relation between x and y.

So in the equation $\frac{\dot{y}}{\dot{x}}=\frac{2}{x}+3-x x$, if, becaufe of the term $\frac{2}{x}$, I write $1+x$ for x, there will arife $\frac{\dot{y}}{\dot{x}}=\frac{2}{1+x}+2-2 x-x x$: then reducing the term $\frac{2}{1+x}$ into an infinite feries $2-2 x+2 x^{2}-$ $2 x^{3}+2 x^{4}, \mathcal{S}^{c}$. we fhall have $\frac{y}{x}=4-4 x+x^{2}$ $2 x^{3}+2 x^{4} \xi^{3} c$. and then according to the rule $y=$

Of the Method of Fuxions

 $4 x-2 x^{2}+\frac{1}{3} x^{3}-1 \frac{1}{2} x^{4}+\frac{2}{5} x^{5}, \mathcal{E}^{2} c$. for the relation of x and y.And thus if the equation $\frac{\dot{y}}{\dot{x}}=x^{-\frac{x}{2}}+x^{-1}-x^{\frac{\pi}{2}}$ were propofed, becaufe I here obferve the term x^{-x} (or $\frac{x}{x}$) to be found, I tranfmute x by fubting tuting $1-x$ for it, and there arifes $\frac{y}{\dot{x}}=\frac{1}{\sqrt{1-x}}+$ $\frac{1}{1-x}-\sqrt{1-x}$. Now the term $\frac{x}{1-x}$ produces $1+$ $x+x^{2}+x^{3}, \xi^{3}$, and the term $\sqrt{1-x}$ is equivalent to $1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{15} x^{3}$, and therefore $\frac{1}{\sqrt{1-x}}$ or $\frac{1}{1-\frac{1}{2} x-\frac{1}{3} x^{2}}, \mathcal{E}^{3} c$. is the fame as $1+\frac{1}{2} x+\frac{1}{3} x^{2}+$ $\frac{s}{15} x^{3}, \mathcal{F}^{\circ} c$. fo that when thefe values are fubftituted we Thall have $\frac{y}{x}=1-1-2 x+\frac{3}{2} x^{2}+\frac{1}{8} x^{3}$, E c. - and then by the rule $y=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{3} \frac{1}{2} x^{4}, \mathcal{E}^{c}$. And fo of others.
Alfo in other cares the equation may fometimes be conveniently reduced by fuch a tranfmutation of the flowing quantity. As if this equation were propofed $\frac{y}{x}=\frac{c^{2} x}{c^{3}-3 c^{2} x+\frac{1}{-3}\left(x^{2}-x^{3}\right.}$, inftead of $x \mid$ write $c-x$, and then I fhall have $\frac{y}{\dot{x}}=\frac{c^{3}-c^{2} x}{x^{3}}$ or $\frac{c^{3}}{x^{3}}-\frac{c^{2}}{x^{2}}$, and then by the rule $y=-\frac{c^{3}}{2 x x}+\frac{c^{x}}{x}$. But the ufe of fuch tranfmutations will appear more plainly in what follows.

Solution of Cafe II.

Preparation. And fo much for equations that involve only one Fluent, but whien each of them
are found in the equation; firft they mult be reduced to the form prefcribed, by making the ratio of the Flusions on one fide equal to any aggregate of fimple terms on the other. And further, if in the equation fo reduced, there be any frac.tions denominated by the flowing quantity, they mult be freed from thofe denominators by the abovementioned tranfmutation of the flowing quantities.

Thus the equation $y a x-\dot{x} x y-a \dot{x}=0$ being propofed, or $\frac{y}{x}=\frac{y}{a}+\frac{a}{x}$; by reafon of the term $\frac{a}{1 x}, I$ affume b at pleafure, and for x I write either $b+x, b-x$ or $x-b$. As if for inftance I fhould write $b+x$; it will become $\frac{y}{x}=\frac{y}{a}+\frac{a}{b+x}$; and then the term $\frac{a}{b+x}$ being converted by divifion into an infinite feries, we fhall have $\frac{y}{x}=\frac{y}{a}+\frac{a}{b}-\frac{a x}{b^{2}}$ $+\frac{a x^{2}}{b^{3}}-\frac{a x^{3}}{b 4}, \mathcal{E}^{2} c$.
In like manner the equation $\frac{y}{\dot{x}}=3 y-2 x+\frac{x}{y}$ $-\frac{2 y}{x x}$ being propos'd; if, by reafon of the terms $\frac{x}{y}$ and $\frac{2 y}{x x}$, I write $1-y$ for y, and $z-x$ for x; there will arife $\frac{y}{x}=x-3 y+2 x+\frac{1-x}{1-y}+$ $\frac{2 y-2}{1-2 x+x^{2}}$. But the term $\frac{1-x}{1-y}$ by infinite divifion, gives $1-x+y-x y+y^{2}-x y^{2} \frac{1}{1} y^{3}-x y^{3}, \delta^{2} c$. And the term $\frac{2 y-2}{1-2 x+x x}$ by a like divifion gives
$-10 x^{4}, \delta^{2} c$. therefore $\frac{y}{\dot{x}}=-3 x+3 x y+y^{2}-x y^{2}$ $-1-y^{3}-x y^{3}$, छ₹ $c .+6 x^{2} y-6 x^{2}+8 x^{3} y-8 x^{3}$ $10 x^{4} y=10 x^{4}, छ^{2} c$.

Rule. The equation being thus prepared, when the cafe requires it, difpofe the terms according to the dimenfions of the flowing quantities, in the following manner. Firft felect thofe that are not affected with the Relate Quantity; then thofe that are affected by its leaft dimenfions; and fo on. In the next place difpofe the terms of each feries thus felected, into their feveral partitions, according to the dimenfions of the Correlate Quantity, writing thofe in the firft partition (i. e. fuch as are not affected by the Relate Quantity) in a collateral order, proceeding towards the right hand, and the reft in defcending feries on the left hand column, as you fee in the following Tables. The work being thus prepared, multiply the firf or the leaft of the terms in the firft partition by the Correlate Quantity; then dividing that product by the number of its dimenfions, put the refult in the quote for the initial term of the value of the Relate Quantity. Then fubftitute this value inftead of the Relate Quantity into the terms of the equation that are placed in the left hand column; and from the next leaft term you will obtain the fecond term of the quote, by the fame procefs that you obtained the firft. Thus repeating the operation, you may continue the quote as far as you pleafe. But this will be plainer by an example or two.

Example 1. Le: the equation $\frac{y}{\dot{x}}=1-3 x$ $+y+x^{2}+x y$ be propofed, whofe terms $1-3 x+x^{2}$ (which are not affected by the Relate Quantity y)
you fee difpofed collaterally in the uppermoft partition; and the reft, y, and $x y$, in the left hand column. This done, firft I multiply the initial

1	$+1-3 x+x x$
$-y$	$*+x-x x+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3} x^{5}, \varepsilon^{2} c$.
$+x y$	$*+x x-x^{3}+\frac{1}{3} x^{4}-\frac{1}{6} x^{5}+\frac{1}{30} x \sigma, \varepsilon^{2} c$.
Sum	$1-2 x+x x-\frac{2}{3} x^{3}+\frac{1}{6} x^{4}-\frac{4}{3} x^{5}, \varepsilon^{2} c$.
$y=$	$x-x x+\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{30} x^{5}-\frac{1}{45} x^{6}, \varepsilon^{2} c$.

term, 1 , into the Correlate Quantity, x, and it makes x; which being divided by the number of dimenfions $\mathbf{1}$, I place in the quote above written ; then fubftituting thefe terms inftead of y in the marginal terms y and $-1 x y$, I have $+x$ and $+x x$, . which I write overagainft them to the right hand. After which from the reft I take the leaft terms -3^{x} and $+x$, whofe aggregate $-2 x$ multiplied into x becomes - $2 x x$, this divided by the number of its dimenfions 2 , gives - $x x$ for the fecond term of the value of y in the quote. In proceeding this term being Jikewife affumed to complete the value of the marginals $+y$ and $+x y$, there will arife $-x x$ and $-x^{3}$ to be added to the terms $+x$ and $\frac{1}{1} x x$, that were before inferted: which being done, 1 again affume the next leaft terms, $+x x$, $-x x$, and $+x x$, which I collect into one fum $+_{x x}$, and thence I derive (as before) the third term $+\frac{1}{3} x^{3}$ to be put into the value of y. Again, taking this term $\frac{x}{3} x^{3}$ into the place of the marginals; from the next leaft terms, $+\frac{\pi}{3} x^{3}$ and $-x^{3}$ added together, I obtain $\frac{7}{6} x^{4}$ for the fourth fourth term of the value of y. And fo on in inflnitum.

Ex. 2. In like manner if it were requir'd to de. termine the relation of x and y in this equation $\frac{y}{x}$ $=1+\frac{y}{a}+\frac{x y}{a^{2}}+\frac{x^{2} y}{a^{3}}+\frac{x^{3} y}{a^{4}}$, Ecc. which feries is 2. fuppofed to proceed ad infinitum. I put I in the beginning, and the other terms in the left hand column, and then purfue the work according to the following table.

	+1
+ $+\frac{y}{a}$	$* \frac{x}{a}+\frac{x^{2}}{2 a^{2}}+\frac{x^{3}}{2 a^{3}}+\frac{x^{4}}{2 a^{4}}+\frac{x^{5}}{2 a^{5}}, \mathcal{E}^{2} .$
$+\frac{x y}{a^{2}}$	* * $\frac{x^{2}}{a^{2}}+\frac{x^{3}}{2 a^{3}}+\frac{x^{4}}{2 a^{4}}+1-\frac{x^{5}}{2 a^{5}}$, c^{2} c.
$+\frac{x^{2} y}{a^{3}}$	$\frac{x^{3}}{a^{3}}+\frac{x^{4}}{2 a^{4}}+\frac{x^{5}}{2 a^{5}}, \xi^{2} c$.
$+\frac{x y y}{a^{4}}$	
$+\frac{x 4 y}{a^{5}}$	* * * * + $+\frac{x^{5}}{a^{5}}, 8^{c}$.
The Sum	$1+\frac{x}{a}+\frac{3 x^{2}}{2 a^{2}}+\frac{2 x^{3}}{a^{3}}+\frac{5 x^{4}}{2 a^{4}}+\frac{3 x^{5}}{a^{5}}, 8 \%$.
$y=$	$x+\frac{x^{2}}{2 a}+\frac{x^{3}}{2 a^{2}}+\frac{x^{4}}{2 a^{3}}+\frac{x^{2}}{2 a^{4}}+\frac{x^{0}}{2 a^{5}}, \varepsilon^{3} .$

As I have propofed to extract the value of y as far as fix dimenfions only of x, for that reafon $I 0$ mit all the terms in the operation which I forefee will contribute
contribute nothing to my purpofe, as is intimated by the mark, Ecc. fubjoined to the feries that are cut off:

Ex. 3. In like manner, if this equation were propofed, $\frac{y}{\dot{x}}=-3 x+3 x y+y^{2}-x y^{2}+y^{3}-x y^{3}+y^{4}$. $-x y^{4}, \delta \sigma^{2}+6 x^{2} y-6 x^{2}+8 x^{3} y-8 x^{3}+10 x^{4} y-$ $10 x^{4}, 8{ }^{8} c$ and it is intended to extract the value of y as far as feven dimenfions of x. I place the terms in order according to the following table; and

	-3x-6x ${ }^{2}-8 x^{3}-10 x^{4}-12 x^{5}-14 x^{6}, \mathcal{E}^{\circ} \mathrm{c}$
+3xy	* $-\frac{9}{2} x^{3}-6 x^{4}-\frac{75}{8} x^{5}-\frac{273}{20} x^{6}, \mathcal{E}^{3}$.
+6x2y	* * - ${ }^{\text {a }}{ }^{4}-12 x^{5}-\frac{75}{4} x^{6}, \mathcal{E}^{2} c$.
$+8 x^{3} y$	* * * $-12 x^{5}-16 x^{6}, \mathcal{E} c$.
$+10 x^{4} y$	c.
E	
+ y^{2}	* * * $+1-\frac{9}{4} x^{4}+6 x^{5}+\frac{107}{8} x^{6}, \mathcal{V}^{2}$
-xy ${ }^{2}$	* * * *- ${ }^{9} x^{5}-6 x^{6}, \mathcal{E}^{2} c$.
Ei.	
+ y^{3}	* - $\frac{27}{8} x^{6}, E^{3} c$.
The Sum	$-3 x-6 x^{2}-\frac{25}{2} x^{3}-\frac{91}{7} x^{4}-\frac{333}{8} x^{5}-\frac{367}{5} x^{6}$,
	- $\frac{3}{2} x^{2}-2 x^{3}-\frac{25}{8} x^{4}-\frac{9}{21} x^{5} x^{5}-\frac{1+15}{16} x^{6}-\frac{367}{35} x^{7}, \delta^{69}$
	+
	$-\frac{27}{8} x^{6}, \underbrace{3} c$,

work as before, only with this exception, that fince in the left band column y is not only of one, but alfo of two and of three dimenfions, (or of more than three, if I intended to produce the value of y beyond the degree of x^{7};) I fubjoin the fquare and cube of the value of y fo far gradually produced, that when they are fubftituted by degrees to
the right hand in the values of the marginals on the left, terms may arife of fo many dimenfions as I obferve to be required for the following operation: And by this method there is produced at length $y=-\frac{3}{2} x^{2}-2 x^{3}-\frac{25}{8} x^{4}, \mathcal{E}^{3} c$. which is the equation required. But whereas this value is negative, it appears that one of thefe quantities x or y decreafes, while the other increafes. And the fame thing is alfo to be concluded, when one of the Fluxions is affirmative and the other negative.

Ex. 4. You may proceed in like manner to refolve the equation, when the Relate Quantity is affecked with fractional dimenfions. As if it were propofed to extract the value of x from this equation $\frac{\dot{x}}{j}=\frac{1}{2} y-4 y^{2}+2 y x^{\frac{1}{2}}-\frac{4}{5} x^{2}+7 y^{\frac{5}{2}}+2 y^{3}$; in y
which x in the term $2 y x^{\frac{x}{2}}($ or $2 y \sqrt{x})$ is affected with the fractional dimenfion $\frac{x}{2}$. From the value of x I derive by degrees the value of $x^{\frac{1}{2}}$, (i.e. by extracting its fquare root) as may be obferved in the lower part of the table, that it may be inferted

and transferred by degrees into the value of the marginal term $2 y x^{\frac{1}{2}}$, and fo at lift I hall have the equation. $x=\frac{1}{4} y^{2}-y^{3}+2 y^{\frac{7}{2}}+\frac{8}{4} y^{\frac{9}{2}}-\frac{41}{100} y^{5}, \delta^{2} c$. by which x is expreffed indefinitely in respect of y. And thus you may operate in any other cafe whatfoever.

I fid before that the fe operations may be performed an infinite variety of ways; this may be done if you affume at pleafure, not only the indial quantity of the upper faeries, but any other given quantity, for the firft term of the quote, and then proceed as before. Thus in the firft of the propofed examples, if you affume \mathbf{I} for the firft term of the value of y, and fubstitute it for the value of y into the marginal terms $+y$ and $-1-x y$, and purfue the reft of the operation as before, (a Specimen of which I havehere given) another value

of y will arise, viz. $1+2 x+x^{3}+\frac{1}{4} x^{4}, \mathcal{E}^{2} c$. And thus another and another value may be produced, by affuming 2 , or 3 , or any other number for its H

Of the Method of Fluxions

firft term. Or if you make ufe of any fymbol, as a, to reprefent the firft term indefinitely, by the fame method of operation (which I Chall here ex. hibit) you will find $y=a+x+a x-x x+a x: x$

	$1+1-3 x+x x$
+y +ay	$\begin{aligned} & +a+x-x x-1-\frac{1}{3} x^{3}, \varepsilon \delta c . \\ & +a x+a x^{2}+\frac{2}{3} a x^{3}, \delta c_{c} \\ & +\operatorname{tax}+x^{2}-x^{3}, \delta^{2} c . \\ & +a x^{2}+a x^{3}, \delta^{c} c . \end{aligned}$
The Sum	$\begin{aligned} & +1-2 x+x^{2}-\frac{3}{2} x^{3}, \delta^{3} c . \\ & +a-1-2 a x+2 a x^{2}+\frac{5}{3} a x^{3}, \mathcal{J}^{c} c . \end{aligned}$
	$\begin{aligned} & a-1+x^{2}+\frac{x}{3} x^{3}-\frac{x}{6} x^{4}, \varepsilon 〕 c . \\ & -a x+a x^{2}+\frac{2}{3} a x^{3}+\frac{5}{12} a x^{4}, \text { Evc. } \end{aligned}$

$+\frac{1}{3} x^{3}-1 \frac{2}{3} a x^{3}, \delta c^{2}$. which being found for a, I may fubititute $1,2,0, \frac{x}{2}$, or any other number, and thereby obtain the relation between x and y an infinite variety of ways.

And it is to be obferved, that when the quantity to be extracted is affected with a fractional dimenfion, (as you fee in the fourth of the foregoing examples) then it is convenient to take unity or fome other proper number for its firft term: And indeed this is abfolutely neceffary, when to obtain the value of that fractional dimenfion the root cannot otherwife be extracted, becaufe of the negative fign, as alfo when there are no terms to be difpofed in the firft or uppermoft partition, from whence that initial term may be deduced.

And thus at laft I have completed this moft troublefome, and of all ochers moft difficull Problem,
when only two Flowing Quantities, together with their Fluxions, are comprehended in an equation. But befides this general method into which I have taken all the difficulcies, there are others much fhorter by which the work may often be eafed in particular cafes: to give fome fecimens of which ex abundanti, will not perhaps be difagreeable to the Reader.

If it happens that the quantity to be refolved has in fome places negative dimenfions, it is not therefore abfolutely neceffary that the equation fhould be reduced to another form. For thus the equation $\dot{y}=\frac{1}{y}-x x$ being propofed, where y is of one negative dimenfion; I might indeed reduce it to another form, as by writing $1+y$ for y : But the refolution will be more expedite, as you have it in the following table.

1. Here affuming 1 for the initial term of the value of y, I extract the reft of the terms as before, and in the mean time from thence, by cegrees, I deH 2
duce the value of $\frac{1}{y}$ by divifion, and infert it into the value of the marginal term.
2. Neither is it neceffary that the dimenfion of the other flowing quantity fhould be always affirmative. For from the equation $y=3+2 y-\frac{y}{x}$ without the prefcribed reduction of the term $\frac{3 y}{x}$ there will arife $y=3 x-\frac{3}{2} x x+2 x^{3}, \mathcal{\delta}^{2} c$. And from the equation $\dot{y}=-y+\frac{1}{x}-\frac{1}{x x}$ the value of y will be found $y=\frac{1}{x}$, if the operation be performed after the manner of the following fpecimen.

Here we may obferve by the way, that among the infinite manners by which any infinite equation may be refolved, it often happens that there are fome that terminate at a finite value of the quantity to be extracted, as in the foregoing example. And thefe are not difficult to find if fome fymbol be affumed for the firft term; for after the refo. lution is performed, then fome proper value of that fymbol may be given, which may render the whole finite.
3. Again, if the value of y is to be extracted from this equation $j=\frac{y}{2 x}+1-2 x+\frac{1}{2} x x$, it may be done conveniently enough without any reduc-
tion of the term $\frac{y}{2 x}$; by fuppofing (after the manner of Analy(ts) that to be given, which is required. Thus for the firtt term of the value of y, I put $2 e x$, taking $2 e$ for the numeral co-efficient which is yet unknown; and fubftituting $2 e x$ inftead of y into the marginal term, there arifes e, which I write on the right hand, and the fum $1-f e$, will give $x+e x$ for the fame firft term of the value of y, which I had firft reprefented by the term $2 e x$; therefore I make $2 e x=x+e x$, and thence deduce $e=1$: So that the firlt fictitious term $2 e x$ of the value of y, is really $2 x$. After the fame manner I make ufe of the fictitious term $2 f x^{2}$, to reprefent the fecond term of the value of y, and thence at laft derive $-\frac{2}{3}$ for the value of f; therefore that fecond term is really - $\frac{4}{3} x x$. And fo the fictitious co-efficient g in the third term will give $\frac{T}{T 0}$. And b in the fourth term will be o. Therefore fince there are no other terms remaining, I conclude the work is finifhed, and that the value is exactly $2 x$ $-\frac{4}{3} x^{2}+\frac{1}{5} x^{3}$. See the operation in the following table.

	$1-2 x-1-\frac{1}{2} \times x$
$+\frac{y}{2 x}$	$e+f x+5 x x+b x^{3}$
The Sum	$\begin{aligned} & +1-2 x+\frac{1}{2} x x \\ & +e+f x+g x x+b x^{3} \end{aligned}$
$\begin{aligned} & \text { Hypothetically } y=2 e x+2 f x^{2}+2 g x^{3}+2 b x^{4} \\ & \text { Confequentially } y= y x-x^{2}+\frac{1}{6} x^{3}+\frac{1}{4} b x^{4} \\ &+e x+\frac{x}{2} f x^{2} \frac{1}{3} g x^{3} \\ & \text { Real value } y=2 x-\frac{4}{3} x^{2} \frac{1}{5} x^{3} . \end{aligned}$	

Much after the fame manner if it were $j=$ $\frac{3 y}{4 x}$ Suppofe $y=e x^{s}$; where e denotes the unknown co-efficient, and s the number of dimenfions, which is alfo unknown : then $e x^{s}$ being fubftituted for y, there will arife $\dot{y}=\frac{3 e x^{x-1}}{4}$, and thence again $y=\frac{3 e x^{5}}{4 s}$; compare thefe two values of y, and you will find $\frac{3 e}{4}=e$, therefore $s=\frac{3}{7}$, and e will be indefinite.
4. Sometimes alfo the operation may be begun from the higheft dimenfion of the equable quantity, and continually proceed to the lower powers. As if this Equation were given $\dot{y}=\frac{y}{x x}+\frac{1}{x x}+3+$ $2 x-\frac{4}{x}$, and we would begin from the highent term $2 x$; by difpofing the capital Series in any order contrary to the foregoing, there will arife at laft $y=x x+4 x-\frac{1}{x}, \mho^{3} c$. as may be feen in the form of working here fet down.

	$\underline{-2 x+3}-\frac{4}{x}+\frac{1}{x x}$
$1+\frac{y}{x x}$	* $+1+\frac{4}{x} *-\frac{1}{x^{3}} \frac{1}{2 x^{4}}, \operatorname{Es}^{2}$.
The Sum	$+2 x+4 *+\frac{1}{x x}-\frac{1}{x^{3}}+\frac{1}{2 x^{4}}, \delta^{2} c$
$y=$	$x^{2}+4 x *-\frac{1}{x}+\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}, \varepsilon^{2} c$

Here it may be obferved by the way, that as the operation proceeded, I might have inferted

and Infinite Series.

any given quantity berween the terms 4^{x} and $-\frac{1}{x}$ for the intermediate term that is deficient, and fo the value of y might have been extracted an infinite variety of ways.
If there are befides any fractional indices of the dimenfions of the Relate Quantity, they may be reduced to Integers, by fuppofing the faid quantity fo affected by its fractional dimenfion to be equal to any third Fluent, and thence by fubftitution of that quantity, as alfo of its Fluxion arifing from the fictitious equation, inftead of the Relate Quantity and its Fluxion.

As if the equation $\dot{y}=3 x y^{\frac{2}{3}}+y$ were propofed, where the Relate Quantity is affected with the fractional index $\frac{2}{3}$. A Fluent z being affumed at pleafure, fuppofe $y^{\frac{1}{3}}=z$, or $y=z^{3}$; then the relation of the Fluxions by Рrob. I. will be $\dot{y}=3 \dot{z} z^{2}$: Therefore fubftituting $3 \dot{z} z^{2}$ for \dot{y}, as alfo z^{3} for y, and z^{2} for $y^{\frac{2}{3}}$, there will arife $3 \dot{z} z^{2}=3 x z^{2}+z^{3}$ or \dot{z} $=x+\frac{1}{3} z$; where z performs the office of the Relate Quantity. But after the value of z is extracted as $z=\frac{1}{2} x^{2}+\frac{x^{3}}{18}+\frac{x^{4}}{216}+\frac{x^{5}}{324^{3}}, \xi^{2} c$. inftead of z refore $y^{\frac{\pi}{3}}$, and you will have the defired relation between x and y. That is $y^{\frac{1}{3}}=\frac{1}{2} x^{2}+\frac{1}{18} x^{3}+\frac{x}{2} \frac{x}{16} x^{4}$, Ec. and by cubing each fide $y=\frac{1}{8} x^{6}+\frac{1}{2} x^{7}$ $+\frac{1}{258} x^{8}, E^{2} c$.

In like manner if the equation $\dot{y}=\sqrt{4 y}+\sqrt{x y}$ were given, or $\dot{y}=2 y^{\frac{1}{2}}+x^{\frac{x}{2}} y^{\frac{x}{2}}$; I make $z=y^{\frac{1}{2}}$, or $z z=y$, and thence by Prob. I. $2 z z=\dot{y}$, and by confequence $2 \dot{z} z=2 z+x^{\frac{x}{2}} z$, or $\dot{z}=1+\frac{x}{3} x^{\frac{x}{2}}$. Therefore by the firt cafe of this, it is $z=x+\frac{1}{3} x^{\frac{3}{2}}$, or

Of the Method of Fluxions

$y^{\frac{1}{2}}=x+\frac{1}{3} x^{\frac{3}{2}}$, then by fquaring each fide $y=x x$ $+\frac{5}{3} x^{\frac{5}{2}}+\frac{1}{2} x^{3}$. And if I fhould defire to have the value exhibited an infinite number of ways, make $z=c+x+\frac{1}{3} x^{\frac{3}{2}}$, affuming any initial term c. and it will be $z z$, that is, $y=c^{2}+2 c x+\frac{2}{3} c x^{\frac{3}{2}}+x^{2}+\frac{2}{3} x^{\frac{5}{2}}$ $+\frac{1}{9} x^{3}$. But perhaps I may feem too minute in treating of fuch things as will but feldom come into practice.

Solution of Cafe III.

The refolution will foon be difpatched, when the equation involves three or more Fluxions of quantities. For between any two of the efe quancities any relation may be affumed, when it is not determined by the ftate of the Queftion, and the relation of the Fluxions may be found from thence: fo that either of them together with its Fluxion may be exterminated. For which reafon, if there be found the Fluxions of three quantities, only one equation need be affumed; two, if there be four ; and fo on: that the equation may final. ly be transformed into another equation, in which two Fluxions only may be found; and then this equation being refolved as before, the relation of the other quantities may be difcovered:

Let the equation propofed be $2 \dot{x}-\dot{z}+\dot{y} x=0$; that I may obtain the relation of the quantities x, y, and z, whofe Fluxions \dot{x}, \dot{y}, and \dot{z}, are contained in the equation; I form a relation at pleafure between any two of them, as x and y, fuppofing that $x=y$, or $2 y=a+z$, or $x=y y$, Ecc. as fuppofe at prefent $x=y y$, and thence $\dot{x}=2 y \dot{y}$. Therefore writing $2 \dot{y y}$ for \dot{x}, and $y y$ for x, the equation propofed will be transformed into this $4 \dot{y}-\dot{z}+\dot{y} y^{2}=0$;

and INFINITESERIES.

hence the relation between y and z will arife $2 y y$ $+\frac{-3}{3} y^{3}=z$, in which if x be written for $y y$, and $x^{\frac{3}{2}}$ for y^{3}, we fhall have $2 x+\frac{7}{3} x^{\frac{3}{2}}=z$. So that among the infinite ways, in which x, y, and z, may be related to each other, one of them is here found, which is reprefented by thefe equations, $x=y y$, $2 y^{2}+\frac{1}{3} y^{3}=z$, and $2 x+\frac{1}{3} x^{\frac{3}{2}}=z$.

Demonflration.

And thus we have refolved the Problem, but the Demonftration is ftill behind. And in fo great a variety of matters, that we may not derive it fynthetically, and with too great perplexity, from its genuine foundation; it may be fufficient to point it out fhort by way of analyfis, that is, when any equation is propofed after you have finifhed the work, you may try whether from the derived equation you can turn back to the equation propofed by Рrob. I; and therefore the relation of the quantities in the derived equation requires the relation of the Fluxions in the propofed equation; and contrariwife, 2. E. D.

So if the equation propofed were $y=x$, the derived equation will be $y=\frac{1}{2} x^{2}$; and on the concrary by $P_{\text {rob. I }}$. we have $\dot{y}=\dot{x} x$, that is $\dot{y}=x$, becaufe x is fuppofed $=1$. And thus from $y=1$ $-3 x-1-y+x x+x y$, is derived $y=x-x^{2}+\frac{1}{3} x^{3}-\frac{7}{6} x^{4}$ $+\frac{1}{30} x^{5}-\frac{1}{45} x^{6}, \Xi^{5} c$. And thence again by Pr_{R}. I. $y=1-2 x+x^{2}-\frac{2}{3} x^{3}+\frac{2}{6} x^{4}-\frac{2}{55} x^{5}, \mathcal{E}^{2} c$. which two values of \dot{y} agree with each other, as appears by fubftituling $x-x x-1-\frac{1}{3} x^{3}-\frac{1}{6} x^{4}+\frac{1}{3}-x^{5}, \mathcal{S}^{2} c$. inftead of y in the firtt value.

But in the reduction of equations, I made ufe of an operation, of which alfo it will be proper to of a flowing quantity by its connexion with a given quantity. Let AE and ae be two lines indefi-

nitely extended each way, along which two moving things or points paffing from afar, at the fame time touch the places A and $a, \mathrm{~B}$ and b, C and c, D and $d, \xi^{\circ} c$. and let B be the point, by its diftance from which, the motion of the moving thing or point in AE is eftimated; fo that $-\mathrm{BA}, \mathrm{BC}, \mathrm{BD}, \mathrm{BE}$, fucceffively may be the flowing quantities, when the thing moving is in the places A, C, D, E. Likewife let b be a like point in the other line. Then will-BA and -ba be contemporaneous Fluents, as alfo BC and $b c$, BD and $b d, \mathrm{BE}$ and $b e, \xi^{\circ} c$. Now if, inftead of the points B and b, be fubftituted A and c, to which as at reft the motions are referred'; then o and - $c a, \mathrm{AB}$ and - $c b, \mathrm{AC}$ and o, AD and $c d, \mathrm{AE}$ and ce, will be contemporaneous flowing quantities. Therefore the flowing quantities are changed by the addition and fubtraction of the given quantities AB and ac: But they are not changed as to the celerity of their motion and the mutual refpects of their Fluxions; for the contemporaneous parts AB and $a b, \mathrm{BC}$ and $b c, \mathrm{CD}$ and $c d, \mathrm{DE}$ and de, are of the fame length in both cafes. And in equations in which thefe quantities are reprefented , the contemporaneous parts of quantities are not therefore changed, notwithftanding their abfolute magnitude may be increafed or diminifhed by fome given quantity. Hence the thing propoled is manifett ; for the only foope of this Pro-

and Infinite Series.

blem is to determine the contemporaneous parts or the contemporaneous differences of the abfolute quantities v, x, y, or z, defcribed by a given rate of flowing; and it is all one of what abfolute magnitude thofe quanticies are, fo their contemporaneous or correfpondent differences may agree with the propofed relation of the Fluxions.
The reafon of this matter may alfo be thus explained algebraically. Let the equation $y=x x y$ be propofed, and fuppofe $x=1+z$. Then by Pr.l. $\dot{x}=\dot{z}$, fo that for $\dot{y}=\dot{x} x y$ may be wrote $\dot{y}=x y$ $+\dot{x} y$. Now fince $\dot{x}=\dot{z}$, it is plain that though the quantities, x, and z, be not of the fame length, yet that they flow alike in refpect of y, and that they have equal contemporaneous parts; why may I not therefore reprefent by the fame fymbols, quantities that agree in their rate of flowing? and to determine their contemporaneous differences, why may not I ufe $j=x y+x z y$ inftead of $\dot{y}=\dot{x} x y$?

Laftly, It appears plainly in what manner the contemporary parts may be found from an equation involving flowing quantities: thus if $y=\frac{1}{x}+x$ be the equation ; when $x=2$, then $y=2 \frac{x}{2}$, but when $x=3$, then $y=3 \frac{x}{3}$; therefore while x flows from 2 to $3, y$ will flow from $2 \frac{x}{2}$ to $3 \frac{x}{2}$; fo that the parts defcribed in this time are $3-2=0$, and $3 \frac{1}{3}-2 \frac{1}{2}$ $=5$. This foundation being thus laid for what follows, I fhall now proceed to more particular Problems.

Problem III.

To determine the Maxima and Minima of

Quantities.

When a quantity is the greateft or the leaft that it can, be at that moment it neither flows backwards nor forwards : for if it flows forwards or increafes then it was lefs, and will prefently be greater than it is ; and on the contrary if it flows backwards or decreafes, then it was greater, and will prefently be lefs than it is. Wherefore find its Fluxion by Prob. I. and fuppofe it to be equal to nothing.

Example. 1. If in the equation $x^{3}-a x^{2}-十$ $a x y-y^{3}=0$ the greateft value of x be required, find the relation of the Fluxions of x and y, and you will have $3 x x^{2}-2 a x x+a x y-3 y y^{2}+a y x=0$, then make $x=0$ there will remain $3 y y^{2}+a j x=0$, or $3 y^{2}=a x$, by the help of which you may exterminate either x or y out of the primary equation; and by the refulting equation you may determine the other, and then both of them by $+3 y^{2}+a x=0$. This 0 peration is the fame as if I had multiplied the terms of the propofed equation by the number of dimen. fions of the other flowing quantity y, from whence we may derive that famous Rule of Huddenius, viz. that in order to obtain the greateft.or leall Relate Quantity, the equation muft be difpofed according to the dimenfions of the Correlate Quantity, and then the terms are to be multiplied into any arithmetical progreffion: but fince neither this rule, nor any other that I know yet publifhed extends to equations affected with furd quantities without a previous reduction, I will give the following example for that purpore.

Ex. 2. If the greateft value of y in the equation $x^{3}-a y^{2}+\frac{b y^{3}}{a+y}-x x \sqrt{a y+x x}=0$ be to be deter: mined, feek the Fluxions of x and y, and there will arife the equation $3 \dot{x} x^{2}-2 a y y+\frac{3 a b y y^{2}+2 b y y^{3}}{a^{2}+2 a y+y^{2}}-$ $\frac{4 a x x y-6 \dot{x} x^{3}-a y x^{2}}{2 \sqrt{a y+x x}}=0$; and fince by fuppofition $\dot{y}=0$, omit the terms multiplied by \dot{y}, (which, to fhorten the labour, might have been done in the operation, and divide the reft by $x x$, then there will remain $3 x-\frac{2 a y+3 x x}{\sqrt{a y+x x}}=0$, and when the reduction is made there will arife $4 a y+3 x x=0$, by the help of which you may exterminate either of the quantities x or y out of the propofed equation; and then from the refulting equation, which will be cubical, you may extract the value of the other.

From this Problem may be had the folution of thefe following.

1. In a given triangle, or in the fegment of any given curve, to infcribe the greateft rectangle.
2. To draze the greateft or the leaft right line, wbich can lje between a given point and a curve given in pofition, or to draze a perpendicular to a curve from a given point.
3. To draw the greateft or the leaft right line which pafing through a given point can lye between two otbers, eitber right lines or curves.
4. From a given point witbin a parabola, to draw a rigbt line wbich ßall cut the parabola more obliquely than any otber, and to do the fame in otber curves.
5. To determine the vertices of curves, their greateft or leaft breadlbs, the points in which revolving, parts cut each other, \mathcal{E}°.
6. To find the points in curves where they bave the greateft or leaft curvature.
7. To find the leaft angle in a given ellipfis, in zobich the ordinates can cut their diameters.
8. Of elliples that pafs through four given points, to determine the greateft, or that which approaches neareft to a circle.
9. To determine the amplitude of a Spherical fuperficies, which can be illuminated in its pofterior part, by light coming from a great diftance, and which is refracted by the anterior bemifphere.

And many other Problems of like nature may more eafily be propofed than refolved, becaufe of the labour of the Computation.

ProblemIV.

To draw Tangents to Curves.

The Firft manner.

Tangents may be varioully drawn according to the various relation of curves to right lines: and firft, let BD be a right line or ordinate in a given angle to another
 right line $A B$, as a bafe or abfcifs, and terminated at the curve ED ; let this ordinate move thro' an indefinite fmall fpace to the place $b d$, fo that it may be increafed by the moment $c d$, while $A B$ is increafed by the moment $B b$ to which DC is equal and parallel, let $\mathrm{D} d$ be produced cill it meet with AB in T , and this line will touch the curve in D or d, and the triangles $d c \mathrm{D},{ }^{\prime} \mathrm{DBT}$
will be fimilar; fo that $\mathrm{TB} \cdot \mathrm{BD}:: \mathrm{D} c$, or $\mathrm{B} b: c d$. Since therefore the relation of BD to AB is exhited by the equation by which the nature of the curve is determined, feek for the relation of the Fluxion by $\mathrm{P}_{\mathrm{rob}}$. I. Then take TB to BD in the ratio of the Fluxion of $A B$ to the Fluxion of BD , and TD will touch the curve in the point D .

Example i. Calling $\mathrm{AB}=x$ and $\mathrm{BD}=y$, let their relations be $x^{3}-a x^{2}+a x y-y^{3}=0$, and the relation of the Fluxion will be $3 x x^{2}-2 a x x+a x y$
$-3 y y^{2}+a y x=0$, fo that $\dot{y}: \dot{x}:: 3 x x-2 a x+a x y$ +ay:3y-ax:: BD or (y): BT. Therefore BT $=\frac{3 y^{3}-a x y}{3 x^{2}-2 a x+a y}$; therefore the point D being given, and thence DB and AB , or y and x, the length will be given by which the tangent TD is determined.

But this method of operation may be thus concinnated: make the terms of the propofed equation equal to nothing, then multiply by the proper number of the dimenfion of the ordinate, and put the refult in the numerator; then multiply the fame equation by the proper number of the dimenfions of the abfcifs, and put the product divided by the abfcifs in the denominator of the value of BT ; then take BT towards A if this value be affirmative, but the contrary way if the value be negative.

Thus the equation $x^{0}-a x^{2} \operatorname{tax}^{1} a^{x} y-y^{3}=0$, being multiplied by the upper numbers gives $a x y-3 y^{3}$ for the numerator, and multiplied by the lower numbers, and then divided by x, gives $3 x^{2}-2 a x-1$-ay for the denominator of the value of BT.

Thus the equation $y^{3}-b y^{2}-c d y+b c d+d x y=0$ (which denotes a parabola of the lecond kind, by

64 Of the Method of Fivxions
help of which Des Cartes conftructed equations of fix dimenfions. See his Geom.pag. 42.) by infpection gives $\frac{3 y^{3}-2 b y^{2}-c d y+d x y}{d y}$ or $\frac{3 v y}{d}-\frac{2 b y}{d}-c+x$ $=$ BT. And thus the equation $a^{2}-\frac{r}{q} x^{2}-y^{2}=0$ (which denotes an ellipfis whofe center is A) gives $\frac{-2 y y}{-\frac{2 r}{q} x}$ or $\frac{q y y}{r x}=\mathrm{BT}$. And fo in others.
q
And you may take notice, that it matters not of what quantity the angle of ordination $A B D$ may be. But as this rule does not extend to equations affected by furd quantities or to mechanical curves, in this cafe we mult have recourfe to the fundamental method.

Ex. 2. Let $x^{3}-a y^{2}+\frac{b y^{3}}{a+y}-x x \sqrt{a y+x x}=0$ be the equation expreffing the relation between $A B$ and BD , and by Рrob. I. the relation of the Fluxions will be $3 x x^{2}-2 a y y+\frac{3 a b y y^{2}+2 b y y^{3}}{a a+2 a y+y y}$ $\frac{4 a \dot{x} x y-6 \dot{x} x^{3}-a y x^{2}}{2 \sqrt{a y+x: x}}=0$, therefore it will be $3 x x$ $-\frac{4 a x y+6 x^{3}}{2 \sqrt{a y+x x}}: 2 a y-\frac{3 a b y+2-2 y^{3}}{a a+2 a j+i y}+\frac{a x x}{2 \sqrt{a y+i x}}$. $\vdots: \dot{y}: \dot{x}:: \mathrm{BD}: \mathrm{BT}$.

Ex. 3. Let ED be the Conchoid of Nicomedes defcribed with the pole G, the Afymptote AT, and the diftance LD ; and let $G A=b, L D=c$, $\mathrm{AB}=x$, and $\mathrm{BD}=y$. Then becaufe of the fimilat triangles DBL and DMG, it will be LB . BD : : $\mathrm{DM}: M \mathrm{G}:$ that is, $\sqrt{ }$ ce-y: $: y:: x: b \neq y$, and therefore $\bar{b}+j \sqrt{c-y y}=j x$. Having this equation, I fuppofe $\sqrt{c}-y=z$, and thus I thall have two equations $b z+y z=y x$, and $z z=c c-y s$, by the help
help of thefe 1 find the Fluxions of the quantities x, y, and z, by Рrob. I. from the firft arifes $b z+y z$

$+\dot{y} z=\dot{y} x+\dot{x} y$, and from the fecond $2 z z=-2 \dot{y} y$ or $z z+-\dot{y}=0$, out of thefe if we exterminate \dot{z} there will arife $\frac{-b y y}{z}-\frac{\dot{y}^{2}}{z}+y z=y x+x y$, which being refolved it will be $y: z-\frac{b y}{z}-\frac{y y}{z}-x::$ $(\dot{y}: \dot{x}::$) $\mathrm{BD}: \mathrm{BT}$. But as $\mathrm{BD} \cdot$ is y, therefore BT $=z-x-\frac{b y-y y}{z}$, that is, $-\mathrm{BT}=\mathrm{AL}+\frac{\mathrm{BD} \times \mathrm{GM}}{\mathrm{BL}}$ where the fign - being prefixed to BT denotes that the point T mult be taken the contrary way to the point A.

Scholium. And hence it appears by the way, how that point of the Conchoid muft be found which fegregates the concave from the convex part ; for when AT is the leaft poffible D will be the point. Therefore make $\mathrm{AT}=v$, and fince $\mathrm{BT}=$ $-z+x+\frac{b y+y y}{z}$, then $v=-z+2 x+\frac{b y+y y}{z}$, here to fhorten the work, for x I fubftitute $\frac{b z+y \approx}{y}$
(which value is derived from what goes before,) and it will be $\frac{2 b z}{y}+z+\frac{b y+y y}{z}=v$, whence the Fluxions \dot{v}, \dot{y}, and \dot{z}, being found by Рrob. I. and fuppofing $\dot{v}=0$, bу Ргов. III. there will arife $\frac{2 b \dot{z}}{y}-\frac{2 b y z}{y y}+\dot{z}+\frac{b \dot{y}+2 \dot{y} y}{z}-\frac{b \dot{z} y-\dot{z} y y}{z z}=\dot{v}=0$. Laftly fubftituting in this $\frac{-y y}{z}$ for \dot{z} and $c c-y y$ for $z z$, (which values of \dot{z} and $z z$ are had from what goes before,) and making a due reduction, we fhall have $y^{3}+3 b y^{2}-2 b c^{2}=0$; by the conftruction of which equation y or $A M$ will be given: then through M drawing $M D$ parallel to $A B$ it will fall upon the point D of contrary flexure.

Now if the curve be mechanical whofe tangent is to be drawn, the Fluxions of the quantities are to be found as in Ex. 5. Prob. I. and then the - reft is to be perform'd as before.

Ex. 4. Let AC and AD be two curves which are cut in the points C and D by the right line BCD applied to the abfcifs $A B$ in a given angle; let $\mathrm{AB}=x, \quad \mathrm{BD}=y$, and area $\mathrm{ACB}=z$, then by Prob. l. Preparation to Ex. 5. it will be $\dot{z}=\dot{x} \times \mathrm{BC}$.

Now let $A C$ be a circle or any known curve, and to determine the other curve AD let an equation be propofed, in which z is involved $z z+a x z$ $=y^{4}$; then by $P_{\text {ROB. }}$ I. $2 \dot{z} z+\dot{a} \dot{x} z+-a x \dot{z}=4 \dot{y} y^{3}$, and writing $\dot{x} \times \mathrm{BC}$ for \dot{z} it will be $2 x z \times$
$\mathrm{BC}+\mathrm{a} x \times \times \mathrm{BC}+a x z-4 y y^{3}=0$, therefore $2 z x$ $\mathrm{BC}+a x \times \mathrm{BC}+a z: 4)^{3}::(y: \dot{x}::) \mathrm{BD}: \mathrm{BT}$; fo that if the nature of the curve $A C$ be given the ordinate BC and the area ACB or z, the point D will be given, through which the Tangent DT will pafs.

After the fame manner if $3 z=2 y$ be the equaof the curve AD , it will be $3 \dot{z}$ (or $3 \dot{x} \times \mathrm{BC}$) $=2 \dot{y}$, fo that $3 \mathrm{BC}: 2::(y: x::) \mathrm{BD}: \mathrm{BT}$. And fo in others.

Now for determining the ocher curve AD whole tangent is to be drawn, let there be given an equation in which z is involved, fuppofe $z=y$, then it will be $\dot{z}=\dot{y}$, and $\mathrm{C} t: \mathrm{B} t::(\dot{y}: \dot{x}::) \mathrm{BD}:$ BT , but the point T being found, the Tangent DT may be drawn.

Ex. 5. Let $\mathrm{AB}=x, \mathrm{BD}=y$, as before, and let the length of any curve $A C$ be z, and drawing a tangent to it, as $\mathrm{C} t$, it will be $\mathrm{B} t: \mathrm{C} t:: \dot{x}: \dot{z}$ or $\dot{z}=\frac{\dot{x} \times \mathrm{C}_{t}}{\mathrm{~B} t}$: As fuppofe $x z=y y$, it will be $\dot{x} z+\dot{z} x$ $=2 \dot{y} y$, and for \dot{z} writing $\frac{\dot{x} \times \mathrm{C} t}{\mathrm{~B} t}$, there will arife $\dot{x} z$ $+\frac{\dot{x} x \times \mathrm{C} t}{\mathrm{~B} t}=2 y y$, therefore $z+\frac{x \times \mathrm{C} t}{\mathrm{~B} t}:: 2 y: \mathrm{BD}$: BT.

Ex. 6. Let AC be a circle or any other known curve whofe tangent is $\mathrm{C} t$, and let AD be any other curve whofe Tangent DT is to be drawn, and let that be defined
 by affuming AB equal to the arch AC ; and CE , K 2

BD
$B D$ being ordinates to $A B$ in a given angle, let the relation of BD to CE or AE be expreffed by any equation. So call AB or $\mathrm{AC}=x, \mathrm{BD}=y_{1}$, $\mathrm{AE}=z$, and $\mathrm{CE}=v$, and it is plain that \dot{v}, \dot{x}, and \dot{z}, the Fluxions of $\mathrm{CE}, \mathrm{AC}, \mathrm{AE}$, are to each other, as $\mathrm{CE}, \mathrm{C} t$ and $\mathrm{E} t$; therefore $\dot{x} \times \frac{\mathrm{CE}}{\mathrm{C}}=\dot{v}$, and $\dot{x} \frac{\mathrm{E} t}{\mathrm{C}_{t}} \mathrm{x}=\dot{z}$.

Now let any equation be given to define the curve AD , as $y=z$, then $\dot{y}=\dot{z}$, and therefore $\mathrm{E} t: \mathrm{C}$, $::(\dot{y}, \dot{x}::)$ BD $:$ BT. Or let the equation be $y=z$ $+v-x$, and it will be $\dot{y}=\dot{v}+\dot{z}-\dot{x}=\frac{\dot{x} \times \overline{\mathrm{EE}+\mathrm{E} t-\mathrm{U}}}{\mathrm{C} t}$ and therefore $\mathrm{CE}+\mathrm{E} t-\mathrm{C} t: \mathrm{C} t::(\dot{y}: \dot{x}::) \mathrm{BD}:$ BT . Or finally let the equation be $a y y=v^{3}$, and it will be $2 a \dot{y y}=\left(3 \dot{v} v^{2}=\right) 3 \dot{x} v^{2} \times \frac{\mathrm{CE}}{\mathrm{C} t}$, fo that $3 v^{2}$ $\times \mathrm{CE}: 2 a y \times \mathrm{C} t:$: BD : BT.

Ex. 7. Let FC be a circle which is touched by CS in C , and let FD be a curve which is defined by affuming any rela-
 tion of the ordinate DB to the arch FC , which is in. tercepted by DA drawn to the center. Then letting fall CE, the ordinate in the circle, call $A C$ or $A F=1$, $\mathrm{AB}=x, \mathrm{BD}=y, \mathrm{AE}=z, \mathrm{CE}=v, \mathrm{CF}=t$, and it will be $i z=\left(i \times \frac{\mathrm{CE}}{\mathrm{CS}} \Rightarrow\right) \dot{v}$, and $-i v=\left(i \times \frac{\mathrm{ES}}{\mathrm{CS}}=\dot{z}\right.$, here I put \dot{z} negatively becaufe AE is diminifhed while EC is increafed; and befides AE:EC::

and Infinite Series.

$\mathrm{AB}: \mathrm{BD}$, fo that $z y=v x$, and thence by РRob. I $z y+y z=\dot{v} x+\dot{x} v$, then exterminating \dot{v}, \dot{z}, and v, it is $j x-i y^{2}-i x^{2}=x y$. Now let the curve DF be defined by an equation, from which the value of i may be derived to be fubftituted here : fuppofe let $t=y$, (an equation to the firft quadratrix,) and by Prob. I. it will be $i=j^{y}$, fo that $j x-y y^{2}-j x^{2}$ $=x y$, whence $y \cdot x x+y y-x::(\dot{y}:-\dot{x}::) \mathrm{BD}$ $(y): B T$, therefore $\mathrm{BT}=x^{2}+y^{2}-x$, and AT $=x x+y y=\frac{\mathrm{AD} q}{\mathrm{AF}}$. After the fame manner if it is $t=b y$, there will arife $2 t \dot{t}=b \dot{y}$, and thence AT $=\frac{b}{2 t} \times \frac{\mathrm{AD} q}{\mathrm{AF}}$. And fo of others.

Ex. 8. Now if AD be taken equal to the arch FC, (the curve ADH being then the fpiral of Arcbimedes) the fame names of the lines ftill remaining as were put afore ; becaufe of the right angle ABD it is $x x \frac{1}{1} y y=t t$, and therefore by Рrob. I. $\dot{x} x+y y=i t$; it is alfo $\mathrm{AD}: \mathrm{AC}:: \mathrm{DB}: \mathrm{CE}$, fo that $t v=y$, and thence by Prob. I. $i v+i v=j$: laftly the Fluxion of the arch FC is to the Flux-
 ion of the right line $\mathrm{CE}:: \mathrm{AC}: \mathrm{AE}$, or as $\mathrm{AD}: \mathrm{AB}$, that is, $\dot{i}: \dot{v}$: $t: x$, and thence $i x=v t$; compare the equations now found, and you will have $i v+i x=y$, and thence $x x+y y=\left(i t \Rightarrow \frac{y t}{v+x}\right.$. Therefore compleating pendicular to the fpiral.

And from hence I imagine it will be fufficiently manifeft by what method the tangents of all forts of curves may be drawn; however it may not be foreign to the purpofe, if I alfo fhow how the Problem may be perform'd when the curves are referred to right lines after any other manner whatever, fo that here being the choice of feveral methods, the eafieft and moft fimple may always be ufed.

The Second manner.

Let D be a point in the curve, from whence the fubtenfe $D G$ is drawn to a given point G, and let DB be an ordi-
 nate in any given angle to the abfcifs AB. Now let the point D flow thro' an infinitely fmall face $\mathrm{D} d$ in the curve, and in GD let $\mathrm{G} k$ be taken equal to $\mathrm{G} d$, and let the parallelogram $d c \mathrm{~B} b$, be completed, then $\mathrm{D} k$ and $\mathrm{D} c$ will be the contemporary moments of GD and BD by which they are diminifhed, while \mathbf{D} is transferred to d. Now let the right line FT be produced, till it meet with $A B$ in T, and from the point T to the fubtenfe GD, let fall the perpendicular TF , and then the trapezia Dcdk and DBTF will be alike; and therefore $\mathrm{DB}: \mathrm{DF}:: \mathrm{D}_{c}: \mathrm{D} k$. Since then the relation of BD to GD is exhibited by the equation for determining the curve, find the relation of the Flux- ions, and take FD to DB in the ratio of the Fluxion of GD to the Fluxion of $B D$, then from F raife the perpendicular FT which may meet with AB in T , and drawing DT it will touch the curve in D, but DT mult be taken towards G, if it be affirmative, and the contrary way, if it be negative.

Ex. i. Call $\mathrm{GD}=x$, and $\mathrm{BD}=y$, and let their relation be $x^{3}-a x^{2}+a x y-y^{3}=0$; then the relation of the Fluxions will be $3 \dot{x} x^{2}-2 a \dot{x} x+a \dot{x} y+a j x-3 \dot{x} \dot{y}^{2}$. $=0$. Therefore $3 x x-2 a x+a y: 3 y y-a x::(\dot{y}:$ $\dot{x}::) \mathrm{DB}(y) \mathrm{DF}$, fo that $\mathrm{DF}=\frac{3 y^{3}-a x y}{3 x^{2}-2 a x+a y}$. Then any point D in the curve being given, and thence BD and GD or y and x, the point will be given alfo, from whence if the perpendicular FT be raifed, from its concourfe with the abfcifs $A B$ in T, the Tangent DT muft be drawn.

And hence it appears, that a rule may be derived here, as well as in the former cáfe. For having difpofed all the terms of the given equation on one fide, multiply its terms feverally by the dimenfions of the ordinate y, and place the refult in the numerator of the fraction; then multiply by the dimenfions of the fubtenfe x, and dividing the refult by that fubtenfe x, place the quote in the denominator of the value of DF ; and take the fame line DF towards G , if it be affirmative, otherwife the contrary way. Where you may obferve that it is no matter, how far diftant the point G is from the abfififs AB ; or if it be at all diftant: or what is the angle of ordination ABD.

Let the equation be as before $x^{3}-a x^{2}+a x y-y^{3}$ $=0$; it gives immediately $a x y-3 y^{3}$ for the numerator, and $3 x^{2}-2 a x+$ ay for the denominator of the value of DF.

Let alfo $a+\frac{b}{a} x-y=0$, (which equation is to a Conick Section,) it gives - y for the numerator, and $\frac{b}{a}$ for the denominator of the value of $D F$, which therefore will be $-\frac{a y}{b}$.

And thus in the Conchoid, (in which the matter will be performed more expeditioufly than before) putting $\mathrm{GA}=b, \mathrm{LD}=c, \mathrm{GD}=x$, and $\mathrm{BD}=y$, [See Fig. pag. 6^{5}.] it will be BD (y): DL (c):: GA $(b): G L(x-c)$, therefore $x y-c y=c b$, or $x y$ $-c y-c b=0$. This equation according to the rule gives $\frac{x y-c y}{y}$, fo that $x-c=D F$. Therefore prolong $G D$ to F, fo that $D F=L G$, and at F raife the perpendicular FT , meeting the afymptote AB in T , then DT being drawn which touch the Conhoid.

But when compound or furd quantities are found in the equation, you muft have recourfe to the general method, except you fhould choofe rather to reduce the equation.

Ex. 2. If the equation $b+y \sqrt{c-y y}=y x$, were given for the relation between GD and BD; [See Fig.pag. 70.] find the relation of the Fluxions by Рrob. I. as fuppofe $\sqrt{c-y y}=z$, and you will have the equations $b z+y z=y x$ and $c-y y=z z$, and thence the relation of the Fluxions $b z+y z+y z=j x+y \dot{x}$, and $-2 y y=2 \dot{z} z$. Now z and z being exterminated,
 therefore $y: \sqrt{c-y y}-\frac{b y-y y}{\sqrt{c-y y}}-x::(\dot{y}: \dot{x}::)$ $B D(y): D F$.

Third manner.

Moreover if the Curve be referred to two fubtenfes $A D$ and $B D$, which being drawn from two given points A and B, may meet at the Curve: Conceive that point D to flow on thro' an in. finitely little fpace $\mathrm{D} d$ in the curve, and in AD and BD take $A k=A d$ and $\mathrm{B} c=\mathrm{B} d$, and then
 $k \mathrm{D}$ and $c \mathrm{D}$ will be contemporaneous moments of the lines AD and BD . Take therefore DF to BD in the ratio of the moment $\mathrm{D} k$ to the moment D_{c}, (that is in the ratio of the Fluxion of the line AD to the Fluxion of the line BD ,) and erect the perpendiculars BT FT meeting in T, then the trapezia DFTB and $\mathrm{D} k d c$ will be fimilar, and therefore the diagonal DT will touch the Curve.

Therefore from the equation by which the relation is defined between AD and BD , find the relation of the Fluxions by Prob. I. and take FD to BD in the fame ratio.

Ex. Suppofing $\mathrm{AD}=x$ and $\mathrm{BD}=y$, let their relation be $a+\frac{e x}{d}-y=0$; (this equation is to the ellipfes of the fecond order, whofe properties for refracting light are fhewn by Des Cartes in the fecond book of his Geometry.) Then the relation of the Fluxions will be $\frac{e x}{d}-j=0$. Thus therefore $e . d:: \dot{y}: \dot{x}:: \mathrm{BD}: \mathrm{DF}$; and for the fame reafon if $a-\frac{e x}{d}-y=0$, it will be $e:-d:: \mathrm{BD}:$

74 Of the Metbod of Fuxions
DF. In the firtt cafe take DF towards A, and the concrary way in the other cafe.

Corol. r. Hence if $d=e$, (in which cafe the curve becomes a Conick Section, it will be $\mathrm{DF}=\mathrm{DR}$,

And the triangles DFT and DBT being equal, the angle FDB will be bifected by the tangent.

Corol. 2. Hence thofe things will be manifeft of themfelves, which are demonitrated by Des Cartes, concerning the Refraction of this curve, in a very prolix manner. Forafmuch as DF and DB, (which are in the given ratio of d to e) in refpect of the radius $D T$, are the fines of the angles DTF - and DTB, that is of the ray of incidence AD up. on the furface of the Curve, and of its Reflexion or Refraction DB. And there is a like reafoning concerning the Refractions of the Conic Sections, fuppofe that either of the points, A, or B, be conceived to be at an infinite diftance.

It would be eafy to modify this rule in the man. ner of the foregoing, and to give more examples of it; as alfo when curves are referred after any other manner, and cannot commodiounly be reduced to the foregoing, it will be very eafy to find out other methods in imitation of this, as occali. on fhall require.

> The Fourtb manner.

As if the right line BCD fhould revolve about a given point B, and one of its points D fhould de-
fribe a Curve, and another point C fhould be che interfection of the right line BCD with another

right line AC given in pofition. Then the relation of BC and BD being expreffed by any equation; draw BF parallel to AC , fo as to meet DE perpendicular to BD in F . Alfo erect FT perpendicular to DF , and rake it in the fame ratio to BC , as the Fluxion of BD has to the Fluxion of BC. Then drawing DT it will touch the Curve.

> The Fifth manner.

But if the point A being given, the equation fhould exprefs the relation between AC and BD ; draw CG parallel to DF, and take FT in the fame ratio to BG, as the Fluxion of BD has to the Fluxion of AC.

The Sixth manner.

Or again, if the equation expreffes the relation between $A C$ and $C D$; lei AC and FT meet in H, and take HT in the fame ratio to BG, as the Fluxion of CD has to che Fluxion of AC. And the like in ochers.

The Seventh manner. For Spirals.

The Problem is not different when the Curves are referred not to Right Lines, but to other Curve
7^{6} Of the Method of Fluxions
Lines, as is ufual in Mechanical Curves. Let BG be the Circumference
 of a Circle, in whofe femi-diameter A G, while it revolves 2. bout the center A , let the point D be conceived to move any how, fo as to defribe the Spiral ADE; and fuppofe $\mathrm{D} d$ to be an infinitely little part of the Curve thro' which D flows; then in AD take Ac equal to $A d$, and $c \mathrm{D}$ and Gg will be the contemporary moments of the right line AD and the periphery BG. Therefore draw At parallel to $c d$, that is, perpendicular to AD, and let the tangent DT meet it in T . Then it will be CD $: c d:: \mathrm{AD}: \mathrm{AT}$. Alfo let $\mathrm{G} t$ be parallel to the tangent DT , and it will be $c d: \mathrm{Gg}:: \mathrm{Ad}$, or AD : AG:: AT : At.

Therefore any equation being propofed, by which the relation is expreffed between $B G$ and $A D$; find the relation of their Fluxions by $\mathrm{Pr}_{\mathrm{ob}}$. L. and take $\mathrm{A} t$ in the fame ratio to AD ; then $\mathrm{G} t$ will be parallel to the Tangent.

Ex. 1. Calling $B G=x$ and $A D=y$, let their relations be $x^{3}-a x^{2}+a x y-y^{3}=0$, and by Prob. L. $3 x^{2}-2 a x+a y: 3 y^{2}-a x::(y: x::) \mathrm{AD}: \mathrm{A} t:=$ AP : AG. The point t being thus found, draw $\mathrm{G} t$, and DT parallel to it, which will touch the Curve.

Ex. 2. If it is $\frac{a x}{b}=y$; (which is the equation to the Spiral of Arcbimedes) it will be $\frac{a \dot{x}}{b}=\dot{y}$. Therefore $a: b::(\dot{y}: \dot{x}::)$ AD : At. Wherefore, by the way, if TA be produced to P, that it may be AP:AD $:: a: b$; then PD is Perpendicular to the Curve.

Ex. 3. If $x x=b y$, then $2 x x=b \dot{y}$, and $2 x: b:$: $\mathrm{AD}:$ At. And thus Tangents may be eafily drawn to any Spirals whatfoever.

The Eighth manner. For Quad.ratrices.
Now if a Curve be fuch, that any line AGD, being drawn from the center A, meets the Circle

in G,and the Curve in D: and if the relation between the arch BG and the right line DH , which is an ordinate to the bafe or abfeifs AH in a given angle, be determined by any equation whatever : Conceive the point D to move in the Curve for an infinitely litcle interval to d, and the parallelogram $d b \mathrm{H} k$ being compleated, produce $\mathrm{A} d$ to e, fo that $A e=A D$. Then $G g$ and $D k$ will be contemporaneous
temporaneous moments of the arch BG and the ordinate DH. Now produce $\mathrm{D} d$ to T, where it may meet with AB , and from thence let fall the perpendicular TF on $\mathrm{D} e \mathrm{~F}$. Then the trapezia $\mathrm{D} k d e$ and DHTF will be fimilar ; therefore $\mathrm{Dk}: \mathrm{de}_{\mathrm{e}}$: $\mathrm{DH}: \mathrm{DF}$. And befides if $\mathrm{G} f$ be raife! perpendicular to AG meeting AF in f, becaufe of the parallels DF and Gf , it will be $\mathrm{De}_{e}: \mathrm{Gg}:: \mathrm{DF}$: Gf; therefore ex equo $\mathrm{Dk}: \mathrm{Gg}:: \mathrm{DH}: \mathrm{G} f$, that is as the moments or Fluxions of the lines DH and B G. Therefore by the equation which expreffes the relation of BG to DH , find the relation of the Fluxions by $\mathrm{P}_{\text {rob. }}$ I. and in that ratio take $\mathrm{G} f$ (the tangent of the circle BG) to DH ; draw DF parallel to $\mathrm{G} f$, which may meet $\mathrm{A} f$ produced in F , and at F erect the perpendicular FT meeting AB in T , then the right line DT being drawn will touch the Quadratrix.

Example I. Making $\mathrm{BG}=x$, and $\mathrm{DH}=y$; let it be $x x=b y$. Then by Prob. I. $2 \dot{x} x=b y$; therefore $2 x: b::(\dot{y}: \dot{x}:::$ DH:Gf, but the point F being found, the reft will be determined as above. - But perhaps this rule may be made fomething neater. Make $\dot{x}: \dot{y}:: \mathrm{AB}: \mathrm{AL}$. Then $\mathrm{AL}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$; and DT will touch the curve For becaufe of the equal triangles AFD and ATD , it is $\mathrm{AD} \times \mathrm{DF}=\mathrm{AT} \times \mathrm{DH}$, and therefore $\mathrm{AT}: \mathrm{AD}::\left(\mathrm{DF}: \mathrm{DH}\right.$ or $\left.\frac{y}{\dot{x}} \mathrm{Gf}::\right) \mathrm{AD}$: $\underset{\dot{x}}{\dot{y}} \mathrm{AG}$ or AL .

Ex. 2. Let $x=y$; (which is the equation to the Quadratrix of the Antients;) then $\dot{x}=\dot{y}$; therefore $\mathrm{AB}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$.

and Infinite Series.

Ex. 3. Let $a x x=y^{3}$. Then $2 a x x=3 y y^{2}$: therefore make $3 y^{2}: 2 a x::(\dot{x}: \dot{y}::) \mathrm{AB}: \mathrm{AL}$; then $\mathrm{AL}: \mathrm{AD}:: \mathrm{AD}: \mathrm{AT}$. And thus you may determine expeditiounly the Tangents of any Quadratrices whatever.

The Ninth manner.

Laftly. If ABF be any given Curve, which is touched by the right line $\mathrm{B} t$; and a part BD of

the right line BC (being an ordinate in any given angle to the abfcifs AC) intercepted between this and another Curve DE, has a relation to the Fluxion of the curve $A B$, which is expreffed by any equation; you may draw a Tangent DT to the other Curve, by taking (in the Tangent of this curve) BT in the fame ratio to BD, as the Fluxion of the Curve AB has to the Fluxion of the Right Line BD.
Example 1. Calling $\mathrm{AB}=x$, and $\mathrm{BD}=y$, let it be $a x=y y$: therefore $a x=2 y y$. Then $a: 2 y$ $::(\dot{y}: \dot{x}::) \mathrm{BD}: \mathrm{BT}$.
Ex. 2. Let $\frac{a}{b}=y$. (The equation to the Trochoid, if ABF be a circle.) Then $\frac{a}{b} \dot{x}=\dot{y}$, and a : $b:: \mathrm{BD}: \mathrm{BT}$.

And with the fame eafe may Tangents be drawn, when the relation of $B D$ to $A C$ or to $B C$ is expref-

80

 Of the Method of Fiuxionsfed by any equation. Or when the Curves are referred to Right Lines; or to any other Curves after any other manner whatfoever.

There are alfo many other Problems, whofe folutions are to be derived from the fame principles. Such as thefe following.

1. To find a point of a curve, where a Tangent is parallel to the bafe; or to any right line given in pofstion; or is perpendicular to it; or inclined to it in any given angle.
2. To find the point, where the Tangent is moft or leaft inclined to the ba/e; or any otber right line given in pofition; that is to find the Confine of contrary Flexure. Of this I have given a fpecimen in the Conchoid.
3. From any given point ruithout the Perimeter of a curve to draw a rigbt line, which with the Perimeter Sall make an angle of contait; or a right angle; or any other given angle: that is, from a given paint to drawe Tangents or perpendiculars, or light lines, that

- Sball bave any other inclination to a curve line.

4. From any given point witbin a Parabola to draro a right line, wibich Sall make, with the Perimeter, the greateft or leaft angle poffible. And jo of all curves zobatjoever.
5. To drawe a right line wbich 乃all touch two curves given in pofition; or the Same curve in two points. when that can be done.
6. To drare any curve with given conditions, which Shall touch another curve given in pofition in a given point.
7. To determine the refraction of any ray of ligbt, that falls upon any curve fuperficies.

The refolution of thefe, or of any the like Problems, will not be fo difficult, abating the tedioufnefs of computation, that there is any occafion to enlarge upon them here. And I imagine it will be more agreeable to Geometricians barely to have mentioned them.

Problem V .

At any given Point of a given Curve, to find the quantity of Curvature.

There are few Problems concerning Curves more elegant than This, or that give a greater inflight into their nature. In order to its refolution, I mut premife the following general confiderations.

1. The fame Circle has every where the fame Curvature, and in different Circles the Curvature is reciprocally proportional to their diameters: If the diameter of any Circle be as little again as that of another Circle, the Curvature of its Periphery will be as great again, if the diameter be a third of the other, the Curvature will be thrice as much, E oc.
2. If a Circle touches any Curve on its concave fide in a given point, and its magnitude be fuch that no other Tangent Circle can be interfcribed in the Angle of contact nearer that point, that Circle will be of the fame Curvature as the Curve is of in that point of contact. For that circle which comes between the curve and another Circle at the point of contact, varies lees from the Curve and makes a nearer approach to its Curvature, than that other Circle does; and therefore that Circle approaches neareft to its Curvature, between which and the Curve no other Circle can intervene.
3. Therefore the Center of Curvature at any point of a curve, is the Center of a Circle equally curved, and thus the Radius or Semi-diameter of Curvature is part of the perpendicular which is terminated at that Center.
4. And the proportion of Curvature at different points will be known from the proportion of Cur-

Of the Metbod of FLUxions

.vature of Equi curved Circles, or from the reciprocal proportion of the Radii of Curvature.

The Problem then is reduced to this, viz. To find the Radius or Center of Curvature.

Imagine therèfore that at three points of the Curve δ, D, d, perpendiculars are drawh, of which thofe that are at D, δ, meet in H , and thofe that are in D , d, meet in b, and the point d being in the middle, if there be a greater curvitude at the part Dd than at $\mathrm{D} d$, then DH will be lefs than $d b$; but by how much the perpendiculars $\delta \mathrm{H}$ and $d b$ are nearer to the intermediate perpendicular, fo much the lefs will the diftance be of the points H and b, and at laft, when the perpendiculars meet, the points will coincide. Let them coincide in the point C, and C will be the Center of Curvature, at the point of the Curve D on which the angles ftand; which is manifett of itfelf.

But there are feveral fymptoms or properties of this point C, which may be of ufe for its determination.

As, 1. That it is the concourfe of Perpendicu: lars, that are on each fide at an infinitely little diftance from DC.
2. That the interfection of Perpendiculars at any little finite diftance on each fide, are fepafated and divided by it; fo that thofe that are on the more curved fide D_{δ}, fooner meet at H , and thofe that are on the other lefs curved fide Dd, meet more remotely at b.
3. It DC be conceived to move, while it infifts perpendicularly on the Curve, that point of it C (if. you except the motion of its approaching or receding from the point of infiftance C) will be leaft of all moved, but will be as it were the Center of motion.
4. If a Circle be defrribed with the center C and the diftance DC, no other circle can be defcribed, that can lie between at the contact.
5. If the center H or b of any other touching Circle approaches by degrees to C the center of this, till at laft it coincides with it; than any of the points in which that circle will cut the Curve, will coincide with the point of contact D.

Each of thefe properties may fupply means for refolving the Problem different ways; but we fhall here make choice of the Firft, as being the moft fimple.

At any point D of the Curve AD , let DT be a Tangent, DC a Perpendicular, and C the Center of Curvature, as before. And let AB be the Abfcifs, to which let DB be applied at right angles, which $D C$ meets in P. Draw DG parallel to $A B$, and CG perpendicular to it, in which take Cg of any given magnitude, and draw g δ perpendicular to it, which meets DC in δ. Then it will be $\mathrm{C} g$. $80::(\mathrm{TB}: \mathrm{BD}::$) as the Fluxion of the Abfcifs to the Fluxion of the Ordinate. Likewife imagine the point D to move in the Curve an infinitely little diftance $\mathrm{D} d$, and drawing de perpendicular to DG , and $\mathrm{C} d$ perpendicular to the Curve, let $\mathrm{C} d$ meet DG in F , and δg in f. Then will D_{e} be the momentum of the Abicifs, de the momentum of the Ordinate, and of the contemporaneous momentum of the Right Line g δ. Therefore $\mathrm{DF}=\mathrm{De}$ $+\frac{d e \times d e}{D_{e}}$. Having therefore the ratios of thefe momenta, or which is the fame thing, of their geM 2 nerating

Therefore any equation being propofed in which the relation of BD to AB is expreffed for defining the Curve, find the relation between \dot{x} and \dot{y} by
$\mathrm{P}_{\text {rob. I }}$. and at the fame time fubftitute I for $\dot{x}_{\text {, }}$ and z for \dot{y}. Then from the equation that arifes by the fame Рrob. I. find the relation between \dot{x}, y, and \dot{z}, and at the fame time fubftitute I for \dot{x} and z for \dot{y}, as before. By the former operation you will obtain the value of z, and by the latter that of z, which being obtain'd produce DB to H , towards the concave part of the Curve, that it may be $\mathrm{DH}=\frac{1+z z}{\dot{z}}$, and draw HC parallel to AB meeting the perpendicular DC in C ; then will C be the Center of Curvature at the point of the Curve D. Or fince it is $\mathrm{I}+z z=\frac{\mathrm{PT}}{\mathrm{BT}}$, make $\mathrm{DH}=\frac{\mathrm{PT}}{z \times B T}$, or $\mathrm{DC}=\frac{\left.\overline{\mathrm{DP}}\right|^{3}}{\underset{z \times\left.\overline{\mathrm{DB}}\right|^{3}}{ } \text {. }}$

Example 1. Thus the equation $a x+b x^{2}-y^{2}$ $=0$ being propofed, (which is an equation to the Parabola whofe Latus Rectum is a, and Tranfverfum $\frac{a}{b}$,) there will arife by Рrob. I. $a+2 b x-2 z y=0$, writing I for \dot{x}, and z for \dot{y}, in the refulting equation: (which otherwife fhould have been $a \dot{x}+2 b \dot{x} x$ $-2 y y=0$). Hence there arifes $2 b-2 z z-2 z y=0$, 1 and z being again written for \dot{x} and \dot{y}. By the firf we have $z=\frac{a+2 b x}{2 y}$, and by the latter $\dot{z}=\frac{b-z z}{y}$. Therefore any point D of the Curve being given, and confequently x and y, from thence z and \dot{z} will be given, which being known, make $\frac{1+z z}{\dot{x}}$ $=\mathrm{GC}$ or DH, and draw HC.

Of the Metbod of F य U Ions

Or if definitely you make $a=3$ and $b=1$, fo that $3 x x+x x=y^{2}$, may be the condition of the Hyperbola: if you affume $x=1$; then $y=2, z=\frac{5}{4}$, $z=-\frac{9}{32}$, and $\mathrm{DH}=-9 \frac{1}{\frac{1}{2}}$. The point H being found, raife the perpendicular HC meeting the perpendicular DC before drawn, or, which is the fame thing, make HD: HC:: $(\mathbf{1}: z:: 1) 1: \frac{5}{4}$; then draw DC. the Radius of Curvature.

When you think the computation will not be too prolix, you may fubftitute the indefinite values of z and \dot{z} into $\frac{1+z z}{z}$ the value of CG. Thus in the prefent example, by a due reduction you will have $\mathrm{DH}=y+\frac{4 y^{3}+46 y^{3}}{a a}$. Yet the value of DH by calculation comes out negative as may be feen in the numeral example: but this only fhews, that DH muft be taken towards B; for if it had come out affirmative, it ought to have been drawn the contrary way.

Cor. Hence let the fign prefixed to the fymbol $+b$ be changed, that it may be $a x-b x x-y y=0$. (an equation to the Ellypfis.) Then $\mathrm{DH}=y+$ $\frac{4 y^{3}-4 b y^{3}}{a a}$. -Bat fuppofing $b=0$, that the equation may become $a x-y y=0$ (an equation to the Parabola.) Then $\mathrm{DH}=y+\frac{44^{3}}{a a}$; and thence $\mathrm{DG}=\frac{1}{2} a+2 x$.

From there feveral expreffions it may eafily be concluded, that: the Radius of Curvature of any Conick Section is always $\frac{\left.\overline{4 D P}\right|^{3}}{a a}$.

Ex. 2. If $x^{3}=a y^{2}-x y^{2}$, be propofed; (which is the equation to the Ciffoid of Diocles) by Prob. I. it will be, firf $3 x^{2}=2 a z y-2 x z y-y^{2}$, and then is $; z=\frac{3 x x+y y}{2 a y-2 x y}$, and $\dot{z}=\frac{3 x-a z z+2 z y+x z z}{a y-x y}$. Therefore any point of the Ciffoid being given, and thence x and y, there will be given alro z and z, which being known, make $\frac{1+z z}{z}=C G$.
 is the equation to the Conchoid as before pag. 64.) make $\sqrt{c c-y}=v$, and there will be $b v+y v=x y$. Now the firt of thefecc-yy=vv, will give (by Pros. I.) - $2 y z=2 v v$ (writing z for $\dot{y}_{\text {, }}$) and the latter will give $b \dot{v}+y \dot{v}+z v=y+x z$. From thefe equations rightly difpofed \dot{v} and z will be determined. But that z may alfo be found ; out of the latt equation exterminate the Fluxion \dot{v} by fubftituting $-\frac{y z}{v}$ in its ftead, and there will arife $-\frac{b y z}{v}-\frac{y y z}{v}+z v=y+x z$, an equation that comprehends the flowing quantities without any of their Fluxions; as the refolution of the firft Problem requires. Hence therefore by Prob. I. we fhall have - $\frac{b z^{2}}{v}-\frac{b y z}{v}+\frac{b y z \dot{v}}{v}-\frac{2 y z z}{v}-\frac{y y \dot{z}}{v}+$ $\frac{y y z v}{v v}+\dot{z} v+z \dot{v}=2 z+x z$; this equation being reduced, and difpofed in order will give \dot{z}. But when z and \dot{z} are known, make $\frac{1+z z}{\dot{z}}=$ CG.

If we had divided the laft equation but one by z, then by $\mathrm{P}_{\text {rob. }}$ I. we fhould have had - $\frac{b z}{v}$ + $\frac{b y v}{v v}-\frac{2 y z}{v}+\frac{y y v}{v v}+\dot{v}=2-\frac{y \dot{z}}{z z}$; which would have

88 Of tbe. Metbod of FI UXIONS

 have been a more fimple equation than the former for deiermining \boldsymbol{x}.I have given this example, that it may appear, how the operation is to be performed in furd equations. But the curvature of the Conchoid may be thus found a thorter way. The parts of the equation $\overline{b+\sqrt{c--y y}}=x y$ being fquared and divided by $y y$, there arifes $\frac{b^{2} c^{2}}{y^{2}}+\frac{2 b c^{2}}{y}-c^{2}-2 b y-y^{2}=x^{2}$, and thence by Prob. I. $\frac{-b^{2} c^{2} c^{2}}{y^{3}} \frac{-2 b c^{2} z}{y^{2}}-2 b z-2 y z$ $=2 x$, or $\frac{-b^{2} c^{2}}{y^{3}}-\frac{b c^{2}}{y^{2}}-b-y=\frac{x}{z}$; and hence again by Proв. I. $\frac{3 b^{2} c^{2} z}{y^{4}}+\frac{2 b c^{c} z}{x^{3}}-z=\frac{x}{\frac{1}{2}}-\frac{x \dot{z}}{z \dot{z}^{2}}$, by the firft refult z is determined, and \dot{z} by the latter.

Ex. 4. Let ADF be a Trochoid or Cycloid belonging to the circle ALE, whofe diameter is

AE , and making the ordinate BD to cut the circle in L , call $\mathrm{AE}=a, \mathrm{AB}=x, \mathrm{~B} D=y, \mathrm{BL}=v$, and

and Infinite Series.

 the arch $\mathrm{AL}=t$, and the Fluxion of the fame arch $=i$. Firft (drawing the Semi-diameter PL) the Fluxion of the Bafe or Abfcifs AB , will be to the Fluxion of the arch AL as BL to PL; that is \dot{x} or $\mathrm{I}: \dot{t}:: v: \frac{1}{2} a$, and therefore $\frac{a}{2 v}=\dot{t}$. Then from the nature of the circle $a x-x x=v v$, and therefore by Рrob. I. $a-2 x=2 \dot{v}$ or $\frac{a-2 x}{2 v}=\dot{v}$.Moreover from the nature of the Trochoid it is $L D=\operatorname{arch} A L$, and therefore $v+t=y$, and thence by Рrob. I. $\dot{v}+\dot{t}=z$. Laftly, inftead of the Fluxions v and i, let their values be fubftituted, and there will arife $\frac{a-x}{v}=z$, whence by Рrов. I. is derived $\frac{-a \dot{v}}{v v}+\frac{x \dot{v}}{v v}-\frac{1}{v}=\dot{z}$, thefe being found make $\frac{1+z z}{\dot{z}}=-\mathrm{DH}$, and raife the perpendicular HC.

1. Now it follows from hence that $\mathrm{DH}={ }_{2} \mathrm{BL}$, and $\mathrm{CH}=2 \mathrm{BE}$, or that EF bifects the radius of curvature CD in N. This will appear by fubftituting the values of z and z now found, in the equation $\frac{1+z z}{\dot{z}}=\mathrm{DH}$, and by a proper reduction of the refuit.
2. Hence the Curve FCK defcribed indefinitely by the center of curvature of ADF is another Trochoid equal to this, whofe vertices at I and F adjoin at the cufpids of this. For let the circle Fi equal and like pofited to ALE be defcribed, and let CB be drawn parallel to EF meeting the circle in λ, then will the arch $\mathrm{F} \lambda=\mathrm{EL}=\mathrm{NF}=\mathrm{C} \lambda$.
3. The line CD which is at right angles to the Trochoid IAF will touch the Trochoid IKF in the point C.

Of the Metbod of Fuxions

4. Hence in the inverted Trochoids, if at the cufpid K of the upper Trochoid, a weight be hung by a thread at the diffance KA or 2 EA , and while the weight vibrates, the thread be fuppofed to apply iffelf to the parts of the Tro. choid KF and KI, which refifts it on each fide, that it may not be extended linto a right line, butcompel it (as it departs from the perpendicular) to be by degrees inflected above into the f. gure of the Trochoid, while the lower part CD from the loweft point of contact ftill remains a right line: the weight will move in the perimeter of the lower Trochoid, becaufe the thread CD will always be perpendicular to it.
5. Therefore the whole length KA is equal to the Perimeter of the Trochoid KCF, and its part CD is equal to the part of the Perimeter CF.
6. Since the thread by its of ofillating motion revolves about the moveable point Cas a center, thereore the fuperfices through which the whole line CD continually parfes, will be to the fuperfices through which the part CN above the right line IF paffes at the fame time, as $\mathrm{CD} q$ to $\mathrm{CN} q$, that is, as 4 to 1. Therefore the area CFN is a fourth part of the area CFD, and the area KCNE is a fourth of the area AKCD.
7. Alfo fince the fubtenfe EL is equal and paralled to CN , and is turned about the immoveable center E , juft as CN is moved about the moveable center C , the fuperfices will be equal thro' which they pafs in the fame time; that is, the area CFN, and the fegment of the circle EL: and thence the area NFD will be the triple of that fegment ; and the whole area ADF will be the triple of the femicircle. 1
8. Laftly, When the weight D arrives at the point F , the whole thread will be wound about the Trochoid KCF, and the Radius of Curvature will there be nothing. Wherefore the Trochoid IAF at the cufpid F is more curved than any circle, of Contact infinitely greater than a circle can make with a right line.

There are alfo Angles of Contact, that are infinitely greater than thofe of Trochoids, and others infinitely greater than them, and fo on in infinitum; and yet the greateft of them are infinitely lefs than Right Lined Angles.

Thus $x x=a y, x^{3}=b y^{2}, x^{4}=c y^{3}, x^{5}=d y^{4}, \quad E$ c. denote a feries of curves, of which every fucceeding one makes an angle with its abfcifs, which is infinitely greater than the preceding one can make with its abfcifs: The Angle of Contact which the firft $x x=a y$ makes, is of the fame kind with that of Circles; and that which the fecond $x^{3}=b y^{2}$ makes, is of the fame kind with Trochoids. And tho' the Angles of the fucceeding Curves do infinitely exceed the Angles of the preceding ones, yet they can never arrive at the magnitude of Right Lined Angles.

After the fame manner $x=y, x x=a y, x^{3}=b^{2} y$, $x^{4}=c^{3} y, \Xi^{3} c$. denote a feries of Lines, of which the Angles of the fubfequents made with their abfififfes at their vertices, are always infinitely lefs than the Angles of the preceding ones. Moreover between the Angles of Contact of any two of this kind may other Angles of Contact be found ad infinitum, that will infinitely exceed each other.

Now it appears that one kind of Angles of Contact are infinitely greater than another kind; fince a Curve of one kind, however great it may be, cannot be interpofed at the Point of Contact of another kind between the Curve and its Tangent, however fmall that Curve may be; or an Angle of Contact of one kind cannot neceffarily contain an Angle of Contact of another kind, as the whole contains a part. Thus the Angle of Contact of the curve $x^{4}=c y^{3}$, or the Angle which it makes with its

Abfcifs, neceffarily includes the Angle of Contact of the curve $x^{3}=b y^{2}$, and can never be contained by it. For Angles that mutually exceed each other are of the fame kind, as it happens with the aforefaid Angles of the Trochoid, and of this Curve x^{3}. $=b y^{2}$.

Hence it appears that curves in fome points may be infinitely more ftreight, or infinitely more curved, than any circle, and yet for that reafon do not lofe the form of curve lines. But all tbis by the way only.

Ex. 5. Let ED be the quadratrix to the circle, defcribed from the center A , and letting fall DB perpendicular to AE, make $\mathrm{AB}=x, \mathrm{BD}=y$, and AE $=1$. Then it will be $j x-y y^{2}-j x^{2}=x y$ as before, (pag.69.) Then writing if for \dot{x}, and \dot{z} for y, the equation becomes $z x-z y^{2}-z x^{2}=y$, thence by Prob. I. $z \dot{x}-z y^{2}-z x^{2}+z \dot{x}-2 z \dot{x} x-2 z \dot{y} y=\dot{y}$, then reducing and again writing I for \dot{x} and z for \dot{y} there arifes $\dot{z}=\frac{2 z^{2} y+2 z x}{x-x x-y y}$. But z and \dot{z} being found make $\frac{1+z z}{\dot{z}}=\mathrm{DH}$, and draw HC as before.

If you defire a conftruction of the Problem, me you will find it very fhort. For draw DP perpen-

dicular to DT meeting AT in P, and make 2AD $: \mathrm{AE}:: \mathrm{PT}: \mathrm{CH}$. For $z=\frac{y}{x-x x-y y}=\frac{\mathrm{BD}}{-B T}$, and

$$
z_{j}=
$$

$z y=\frac{B D_{q}}{-B T}=B P$. Alfo $z y+x=-A P$, and
$\frac{2 z}{x-x x-y y}$ into $z y+x=\frac{2 \mathrm{BD}}{\mathrm{AE} \times \overline{\mathrm{BT}}}$ into $-\mathrm{AP}=\dot{z}$. Moreover it is $\mathrm{I}+z z=\frac{\mathrm{PT}}{\mathrm{BT}}$ (becaufe $=1+\frac{\mathrm{BD}_{q}}{\mathrm{BT}}=$ $\frac{\mathrm{DTq}}{\mathrm{BT} q}$) and therefore $\frac{1+z z}{\dot{z}}=\frac{\mathrm{PT} \times \mathrm{AE} \times \mathrm{BT}}{-2 \mathrm{BD} \times \mathrm{AP}}=\mathrm{DH}$. Laftly, It is $\mathrm{BT}: \mathrm{BD}:: \mathrm{DH}: \mathrm{CH}=\frac{\mathrm{PT} \times \mathrm{AE}}{-2 \mathrm{AP}}$.
Here the negative value only fhews that CH muft be taken the fame way from DH as AB .

In the fame manner the Curvature of Spirals, or of any other Curves whatever, may be determined by a very fhort calculation.

Furthermore, to determine the Curvature without any previous reduction, when the Curves are referred to Right Lines in any other manner, this method might have been applied, as has been done already for drawing Tangents. But as all Geometrical Curves, and alfo Mechanical ones (efpecially when defining conditions are reduced to infinite equations as I fhall fhew hereafter) may be referred to rectangular Ordinates, I have done enough in this matter. He that defires more, may eafily fupply it by his own induftry ; efpecially if for a further illuftration 1 hall add the method for Spirals. Let BK bea Circle, A its center, B a given point in its circumference. Let ADd be a Spiral, DC its perpendicular, and C the Center of Curvature at the point D . Then drawing the Right Line ADK, and CG parallel and equal to AK; as alfo the perpendicular GF meeting CD in F , make AB or $\mathrm{AK}=\mathrm{I}=\mathrm{CG}, \mathrm{BK}=x, \mathrm{AD}=y$, and $\mathrm{GF}=z$. Then conceive the point D to move in the Spiral for an infinitely little fpace $\mathrm{D} d$, and thro' d draw the femi-diameter Ak , and Cg parallel and equal to it, $g f$ its perfendicular meeting $\mathrm{C} d$ in f,

94 Of the Method of FLuxions which alfo GF meets in P. Produce GF to φ, that $\mathrm{G} \varphi=g f$, and to $A K$ let fall the perpendicu$d e$, and produce it till it meets CD at I . Then the contemporaneous moments of BK, AD, and GF will be $\mathrm{K} k, \mathrm{D}_{e}$, and $\mathrm{F} \varphi$, which therefore may be called $\dot{x} 0, j 0$, and \dot{z}.

sela tion P_{RC} fror the ftit red $z ;$
rai dic the cot anc
bel P
Now it is $\mathrm{AK}: \mathrm{A}_{e}(\mathrm{AD}):: d e: e \mathrm{D}=0 \mathrm{y}$, therefore $y z=\dot{y}$. Befides $\mathrm{CG}: \mathrm{CF}:: d e: d \mathrm{D}=0 y$ $\times \mathrm{CF}:: d \mathrm{D}: d \mathrm{I}=$ oy $\times \overline{\mathrm{CF}}^{2}$. Moreover becaufe the Angle $\mathrm{PC} \phi=$ the Angle $\mathrm{GC} g=\mathrm{DA} d$, and the Angle $\mathrm{CP} Q=$ the Angle $\mathrm{C} d=$ the Angle ed $\mathrm{D}+$ a Right Angle $=A D d$, therefore the Triangles $\mathrm{CP} \varphi$ and ADd are fimilar. And thence AD : $\mathrm{D} d:: \mathrm{CP}(\mathrm{CF}): \mathrm{P} \phi=0{\overline{\mathrm{CF}^{2}}}^{2}$; from whence take $\mathrm{F} \varphi$, and there will remain $\mathrm{PF}=0 \times \overline{\mathrm{CF}}^{2}-0 \times \dot{z}$. Laftly, letting fall CH perpendicular to AD , it is $\mathrm{PF}: d \mathrm{I}:: \mathrm{CG}: e \mathrm{H}$ or $\mathrm{DH}=\frac{y \times \mathrm{CF}_{q}}{\mathrm{CF}_{q}-z}$. Or fubfituting $\mathrm{I}+z z$ for $\overline{\mathrm{FC}}^{2}$ it will be $\mathrm{DH}=\frac{y+y z z}{1+z z-z}$. Here it may be obferved that in thefe kind of computations, I take thofe quantities AD and Ae for equal, the ratio of which differs but infinitely little from the ratio of equality.

Now from hence arifes the following rule. The relation of x and y being exhibited by any equation, find the relation of the Fluxions x and y by
 from the refulting equation find again, by Рrob.I. the relation between \dot{x}, \dot{y}, and \dot{z}, and again fubftitute I for \dot{x} and $y z$ for \dot{y}; the firft refult by due reduction will give y and z, and the latter will give z; which being known make $\frac{y+y z z}{1+z z-z}=\mathrm{DH}$, and raife the perpendicular HC, meeting the perpendicular to the Spiral DC, before drawn, in C: then C will be the center of Curvature. Or which comes to the fame thing, take $\mathrm{CH}: \mathrm{HD}:: z: \mathrm{x}$, and draw CD.

Ex. I. If the Equation be $a x=y$, (which will belong to the Spiral of Archimedes) then by Prob. I. $a \dot{x}=y_{\text {, }}$ (or writing 1 for \dot{x} and $y z$ for y) $a=y z$. Hence again by Prob. I. $o=y z+y z$. Wherefore any point D of the Spiral being given, and thence the length AD or y, there will be given $z=\frac{a}{y}$, and $\dot{z}=\frac{-a y z}{y y}=\frac{-a z}{y}$: which being known make $1+z z-z: 1+z z:: \mathrm{DA}(y): \mathrm{DH}$, and $\mathrm{I}: z:: \mathrm{DH}: \mathrm{CH}$. Hence you will eafily deduce the following conftruction. Produce AB to Q, fo that $A B$: arch $B K::$ arch $B K: B Q$ and make $\mathrm{AB}+\mathrm{AQ}: \mathrm{AQ}:: \mathrm{DA}: \mathrm{DH}: a: \mathrm{HC}$.

Ex. 2. If $a x^{2}=y^{3}$ be the equation that determines the relation between BK and AD . By Prob. I. you will have $2 a x x=3 y y^{2}$, or $2 a x=3 z y^{3}$: Thence $2 a \dot{x}=3 \dot{z} y^{3}+9 z \dot{y} y^{2}$. . It is therefore $z=$ $\frac{2 a x}{3 y^{3}}$ and $\dot{z}=\frac{2 a-9 z z y^{3}}{3 y^{3}}$. This being known make $x+z z$ being reduced to a better form make $9 x x+10$: $9 x x+4:: \mathrm{DA}: \mathrm{DH}$.

Ex. 3. After the fame manner, if $a x^{2}-b x y=y^{3}$, determines the relation of BK to AD , there will arife $\frac{2 a x-b y}{b x y+3 y^{3}}=z$, and $\frac{2 a-2 b z y-b z^{2} x y-9 z^{2} y^{3}}{b x y+3 y^{3}}=\dot{z}$, from which DH , and thence the point C is determined as before.—And thus you will eafily determine the Curvature of any other Spirals, or invent Rules for any other kinds of Curves in imitation of thefe already given.

Now I have finifhed; but having made ufe of a method, which is pretty different from the common ways of operation; and as the Problem itfelf is of the number of thofe which are not very frequent among Geometricians; for the illuftration and confirmation of the Solutions here given, I fhall not think much to give a hint of another, which is more obvious, and has a nearer relation to the ufual methods of drawing Tangents. Thus if from any center and with any radius a Circle be conceived to be defcribed, which may cut any Curve in feveral points: If that Circle be fuppofed to be contracted or enlarged, till two of the points of interfection coincide, it will there touch the Curve: and befides if this center be fuppofed to approach towards, or recede from the point of contact, till the third point of interfection fhall meet with the former in the point of contact ; then will that circle be equi-curve with the Curve in that point of contact. In like manner as infinuated before in the laft of the parts of the center of Curvature, by the help of which I affirmed the Problem might be refolved in a different manner.

Therefore with center C and radius $C D$ let a circle be defcribed that cuts the Curve in the points

d, D, and δ; and letting fall the perpendiculars $\mathrm{DB}, d b, \delta \beta$, and CF to the Abrcifs AB ; call AB $=x, \mathrm{BD}=y, \mathrm{AF}=v, \mathrm{FC}=t$, and $\mathrm{DC}=s$. Then $\mathrm{BF}=v-x$, and $\mathrm{DB}+\mathrm{FC}=y+t$; the fum of thefe Squares is equal to the fquare of DC ; that is, v^{2} $2 v x-1-x^{2}+y^{2}+2 y t+t^{2}=s^{2}$. If you would abbrieviate this make $v^{2}+t^{2}-s^{2}=q^{2}$, (any fymbol at pleafure) and it becomes $x^{2}-2 v x+y^{2}+2 t y+q^{2}=0$. After you have found t, v, and q^{2}, you will have $s=$ $\sqrt{v^{2}+t^{2}-q^{2}}$.

Now let any equation be propofed for defining the Curve, the quantity of whofe Curvature is to be found; by the help of this equation you may expunge either of the quantities x or y, and there will arife an equation, the roots of which, $(d b, \mathrm{DB}$, $\delta \beta, \mathcal{E}^{c}$. if you exterminate x; or $\mathrm{A} b, \mathrm{AB}, \mathrm{A} \beta$, \mathcal{E}_{6}. if you exterminate y) are at the points of interfection $d, \mathrm{D}, \delta, \mathcal{E}^{\circ} c$. Wherefore fince three of them become equal, the circle both touches the Curve, and will alfo be of the fame ciegree of Cur-
vature as the Curve in the point of contact. But they will become equal by comparing the equation with another fictitious equation of the fame num. ber of dimenfions, which has three equal roots; (as Des Cartes has done) or more expeditiounly by multiplying its terms twice by an arithmetical progreffion.

Ex. Let the equation be $a x=y y$ (which is an equation to the Parabola) and expunging x (that is fubftituting its value $\frac{y y}{a}$ in the foregoing equa-
req
len
bef
\sqrt{z}
red

Ra
at
the
co
and there will arife $\frac{12 y^{4}}{a a} *-\frac{4 v}{a} y^{2}+2 y^{2} *=0$ or $v=\frac{3 y^{2}}{a}+\frac{1}{2} a$; whence it is eafily inferred, that $\mathrm{BF}=2 x+\frac{1}{2} a$, as before.

Whercture any point D of the Parabola being given, draw the Perpendicular DP, and in the Axis take $\mathrm{PF}=2 \mathrm{AB}$, and erect the Perpendicular FC , meeting DP in C ; then will C be the Center of Curvarure defired. The fame may be performed in the Ellypfis and Hyperbola, but the calculus is troublefome enough, and in other Curves generally very tedious.

Of Quefions that bave fome Affinity to thefe.

From the refolution of this Problem fome 0 . thers may be performed; fuch are

1. To find the Point wobere the Curve bas a given Degree of Curvature.

Thus in the Parabola $a x=y y$, if the point be required, whofe Radius of Curvature is of a given length f; from the Center of Curvature found as before, you will determine the radius to be $\frac{z+\frac{4 x}{2 z}}{2 z}$ $\sqrt{z z++z x}$, which muft be equal to f. Then by reduction there arifes $x=-\frac{1}{4} a+\sqrt[3]{\frac{1}{16} a f^{2}}$.

II. To find the Point of Rectitude.

I call that the Point of Rectitude, in which the Radius of Flexure becomes infinite, or its center at an infinite diftance. Such it is at the Vertex of the Parabola $a^{3} x=y^{4}$. And the fame Point is commonly the Limit of Contrary Flexure, whofe determination I have exhibited before. But another determination, and that not inelegant, may be derived from this Problem; which is, the longer the Radius of Flexure is, fo much the lefs the Angle DCd becomes; [See fig. pag. 83.] and alfo the moment δf; fo that the Fluxion of the quantity z is diminifhed along with ir, and by the infinitude of that Radius altogether vanifhes. Therefore find the Fluxion \dot{z}, and fuppofe it to become nothing.

As if you would determine the limit of contrary Flexure in the Parabola of the fecond kind, by the help of which Cartefius conftructed Equations of fix Dimenfions. The Equation to that Curve is $x^{3}-b x^{2}-c d x+b c d+d x y=0$, hence by $\mathrm{P}_{\text {ROB. }}$. . there arifes $3 \dot{x} x^{2}-2 \dot{b} \dot{x} x-c d \dot{x}+d \dot{x} y+d x \dot{x}$ $=0$. Now writing I for $\dot{\mathrm{O}_{2}}$, and z for \dot{y}, and o

100

for \dot{z}, if becomes $3 x^{2}-2 b x-c d+d y+d x z=0$; whence again by Prob. I. $6 \dot{x} x-2 b \dot{x}+\dot{d y}+\dot{d} x z$ $\frac{1}{1} d x \dot{z}=0$: here again writing i for \dot{x}, z for \dot{y}, and o for \dot{z}, it becomes $6 x-2 b+2 d z=0$, and there will arife $-c d+d y=0$, or $y=c$.

Wherefore at the Point
 A erect che Perpendicular $\mathrm{AE}=c$, and through E draw ED parallel to AB , then the Point D, where it cuts the Concavo-Convex part of the Parabola, will be in the confine of Contrary Flexure.

By a like method you may determine the Points of Reciitude, which do not come between parts of Contrary Flexure. As if the Equation $x^{4}-4 a x^{3}+6 a^{2} x^{2}-b^{3} y=0$, expreffed the nature of a Curve; you have firft by Prob. I. $4 x^{3}-12 a x^{2}+12 a^{2} x-b 3 z=0$, and hence again $12 x^{2}-24 a x+12 a^{2}-b^{3} z=0$: here fuppofe $\dot{z}=0$, and by reduction there will arife $x=a$. Wherefore take $\mathrm{AB}=a$, [See fig. pag. 102.] and erect the Perpendicular BD; this will meet the Curve in the Point of Rectitude D, as was required.

III. To find the infinite Flexure.

Find the Radius of Curvature, and fuppofe it to be equal to nothing. Thus to the Parabola of the fecond Kind, whofe Equation is $\left.x^{3}=a\right)^{2}$; that radius will be $\mathrm{CD}=\frac{4 a+z x}{6 a} \sqrt{4 a x+3 \times x}$; which becomis nothing, when $x=0$.
IV. To delermine the Point of the greateft or leafo Flexure.

At thefe Points the Radius of Curvature becomes either the greateft or leaft; wherefore the Center of Curvature, at that moment of time, neither moves towards the Point of Contact, nor the contrary way, but is entirely at Reft. Therefore let the Fluxion of the Radius CD be found, or more expeditioufly, let the Fluxion of either of the Lines $\mathrm{AK}, \mathrm{BH}, \mathrm{BD}$, be found, and let it be made equal to nothing.
As if the Queftion were propofed concerning the Parabola of the fecond kind $x^{3}=a^{2} y$; firlt to determine the Center of Curvature, you will find DH $=\frac{a a+9 x y}{6 x}$, and therefore $\mathrm{BH}=\frac{a a+\mathrm{r} 5 x y}{6 x}$. Make $\mathrm{BH}=v$, then $\frac{a a}{6 x}+\frac{s}{2} y$ $=v$; hence by Prob. I. $-a^{-a^{2} x}+\frac{s}{2} \dot{y}=\dot{v}$. Now
 fuppofe \dot{v} or the Fluxion of BH to be nothing; and befides fince by Hyporhefis $x^{3}=a^{2} y$, and thence (by PR. I.) $3 \dot{x} x^{2}=a^{2} y$, then putting $\dot{x}=1$ fubftitute $\frac{3 x x}{a a}$ for \dot{y}, and there will arife $45 x^{4}=a^{4}$. Take therefore $\mathrm{AB}=a \sqrt[4]{\frac{1}{45}}=\frac{a}{\sqrt[4]{45}}$, and raifing the Perpendicular BD, it will meer the Curve in the Point of greateft Curvature ; or, which is the fame thing, make $A B: B D:=3 \sqrt{5}: 1$.

After the fame man ${ }^{-}$
 ner the Hyperbola of the fecond kind reprefented by the Equation $x y^{2}=a^{3}$, will be moft inflected in the Points D and d; which you may deter. mine by taking in the Abrcifs $A Q=1$, and erecting the Per: pendicular $Q P=\sqrt{5}$, and Q_{2} equal to it on the other fide; then drawing $A P$ and $A P$, they will meet the Curve in the Points D and d requi. red.
V. To determine the Locus of the Center of Curon. ture, or to defcribe the Curve, in which that Cen. ter is always found.

We have already fhewn, that the Center of Curvature of a Trochoid is always found in another Trochoid. And thus the Center of Curva: ture in the Parabola is found in another Parabola of the fecond kind, reprefented by the Equation $a \times x=y^{3}$; as will eafily appear from Calculation.
VI. Light falling upon any Curve, to find its Focus, or the Concourje of the Rays that are refracted at any of the Points.

Find the Curvature of that Point of the Curve, and defcribe a Circle, from the Center, and with the Radius, of Curvature. Then find the Concourfe of the Rays, when they are refracted by a Circle about that Point; for the fame is the Concourfe of the refracted Rays in the propofed Curve.

To this may be added a particular Invention of the Curvature of the Vertices of Curves, where

and Infinita Series. 103

they cut their Bafes at Right Angles. For the Point in which the Perpendicular to the Curve meeting with the Bafe cuts it ultimately, is the Center of its Curvature. So that having the relation between the Bafe or $\mathrm{Abfcif} x$, and the Rectangular Ordinate y, and thence (by Рrob. I.) the relation between'the Fluxions \dot{x} and \dot{y}, the value $y \dot{y}$, (if you fubftiture 1 for \dot{x} into it, and make $y=0$) will be the Radius of Curvature.

Thus in the Ellypfis $a x-\frac{a}{b} x x=y y$, it is $\frac{a \dot{x}}{2}$ $-\frac{a \dot{x x}}{b}=y y$; which value of $\dot{y} y$, if we fuppofe y $=0$, and confequently $x=0$, writing I for \dot{x}, becomes $\frac{1}{2} a$ for the Radius of Curvature. And fo at the Vertices of the Hyperbola and Parabola, the Radius of Curvature will be always half of the Latus Rectum.

In like manner for the Conchoid defined by the Equation $\frac{b^{2} c^{2}}{x x}+\frac{2 b c c}{x} \pm_{b b}^{c c}-2 b x-x x=y y$, the va-
 $b-x$. Now fuppofe $y \doteq 0$, and thence $x=c$ or $-c_{\text {, }}$ we fhall have $\frac{-b b}{c}-2 b-c$, or $\frac{b b}{c}-2 b+c$, for the Radius of Curvature. Therefore make AE:EG $:: E G: E C,[S e e$ fig. pag. 65] and $A e: e G:: e G$ $:$:ec, and you will have the Centers of Curvature C and c at the Vertices of the Conjugate Conchoids E and e.

Problem VI.

To determine the Quality of the Curvature at a given Point of any Curve.

By the Quality of Curvature, I mean its Form as it is more or lefs inequable, or as it is more or lefs varied in its progrefs through different parts of the Curve. So if it were demanded, what is the Quality of the Curvature of the Circle? It might be anfwered, that it is uniform or invariable. And thus if it were demanded what is the Quality of the Curvature of the Spiral, which is defcribed by the motion of the point D , [See fig. pag. 94.] proceeding from A in AD with an accelerated Velocity, while the line AK moves with an uniform Rotation about the Center A ; the acceleration of which velocity is fuch, that the Right Line AD has the fame ratio to the Arch BK, defcribed by a given point K, as a Number has to its Logarithm. I fay, if it be afked what is the Quality of the Curvature of this Spiral? It may be anfwered, that it is uniformly varied, or that it is equably inequable. And thus other Curves in their feveral points may be denominated inequably inequable, acccording to the variation of their Curvature - Therefore the Inequability (or Variation) of Curvature is required at any point of a Curve. Concerning which it may be obferved.

1. That at the Points which in fimilar Curves are alike pofited, there is a like inequability or variation of Curvature.
2. That the moments of the Radii of Curvature at thefe Points are proportional to the contemporaneous moments of the Curves, and the Fluxions to the Fluxions.
3. And therefore that when there Fluxions are not proportional, the Inequability of the Curvature will be dilfimilar : for there will be a greater inequability where there is a greater ratio of the Fluxion of the Radius of Curvature to the Fluxion of the Curve. And therefore that Ratio of the Fluxion may not improperly be called the Index of the Inequability, or of the Variation, of Curvature.
At the Points D, and d, infinitely near to each other in the Curve $\mathrm{AD} d$, let there be drawn the Radii of Curvature DC and $d c$, then $D d$ being the moment of the Curve, C_{c} will be the contemporaneous moment of the Radius of Curvature, and $\frac{C_{c}}{D_{d}}$ will be the Index of the Inequability of that Curva-
 vature; for the Inequability may be called fuch; and f o great, as the quantiy of that Ratio $\frac{\mathrm{Cc}}{\mathrm{D} d}$ hews it to be. Or the Curvature may be faid to be fo much more unlike to the uniform Curve of a Circle.

Now letting fall the rectangular ordinate DB and $d b$ to any Line AB , meeting DC in P , make $\mathrm{AB}=x, \mathrm{BD}=y, \mathrm{DP}=t ; \mathrm{DC}=v$, thence it will be $\mathrm{B} b=\dot{x} o$, and $\mathrm{C} c=\dot{v} o$; and $\mathrm{BD}: \mathrm{DP}:: \mathrm{B} b: \mathrm{D} d$ $=\frac{x t}{y}$; and $\frac{\mathrm{C}}{\mathrm{D} d}=\frac{i y}{x t}=\frac{i y}{t}$ making $\dot{x}=\mathrm{r}$. Wherefore the relation between x and y being exhibited by any Equation, and thence according to Prob. IV. and V. the Perpendicular DP or t being found, and the Radius of Curvature v, and the Fluxion v
of that Radius by Prob. I. the Index $\frac{v y}{t}$ of the In. equability of Curvature will be given alfo.

Example I. Let the Equation to the Parabo. la $2 a x=y y$ be given. Then by Prob. IV. $\mathrm{BP}=a$, and therefore $\mathrm{DP}=\sqrt{a a+y y}=t$. Alfo by Prob. V. $\mathrm{BF}=a+2 x$, and $\mathrm{BP}: \mathrm{DP}:: \mathrm{BF}: \mathrm{DC}=\frac{a t+2 t x}{a}$ $=v$. Thefe Equations by Prob. I. give $2 a \dot{x}=2 j \dot{y}$, and $2 \dot{y y} y=2 \dot{t} t$, and $\frac{a \dot{t} \cdot+2 \dot{t} x+2 t \dot{x}}{a}=\dot{v}$, which being reduced to order, and putting $\dot{x}=\mathrm{I}$, there will arife $\dot{y}=\frac{a}{y}, i=\frac{j y}{t}=\frac{a}{t}$, and $\dot{v}=\frac{a \dot{t}+2 i x+2 t}{a}$. Thus \dot{y}, \dot{i}, and \dot{v} being found, there will be had $\frac{v y}{t}$; the Index of the Inequability of Curvature.

As if in Numbers it were determined that $a=\mathrm{I}$, - or $2 x=y y$; and $x=\frac{1}{2}$. Then $y=\sqrt{ } 2 x=1, y=\frac{a}{y}$ $=\mathrm{I}, t=\sqrt{a a+y y}=\sqrt{2}, i=\frac{a}{t}=\sqrt{\frac{1}{2}}$, and $\dot{v}=$ $\left(\frac{a \dot{t}+2 \dot{t} x+2 t}{a} \Rightarrow\right) 3 \sqrt{ } 2$. So that $\frac{\dot{x y}}{t}=3$; which therefore is the Index of Inequability. But if it were determined that $x=2$, then $y=2, y=\frac{1}{2}, t=\sqrt{ } 5$, $i=\sqrt{\frac{x}{5}}$, and $\dot{v}=3 \sqrt{5}$; that is, $\frac{v y}{t}=6$ will be here the Index of Inequability.

Therefore the inequability of Curvature at that point of the Curve, from whence letting fall an Ordinate it will be equal to the Latus Rectum of the Parabola, will be double to the Inequability at that point from whence the Ordinate is $\frac{1}{2}$ of the Latus Rētum; that is, the Curvature in that Point is as unlike again to the Curvature of the Circle, as the Curvature at the fecond Point.

Let the Equation be $2 a x-b x x=y y$. By $\mathrm{P}_{\text {rob }}$. IV. it will be $a-b x=\mathrm{BP}$, and thence $a a-2 a b_{x}$ $+b^{2} x^{2}+y^{2}=t^{2}$, or $a a-b y y+y y=t t$. Alfo by Prob. V. it is $\mathrm{DH}=y+\frac{y^{3}-b y^{3}}{a a}$; where if for $y y$ -byy you fubftitute $t t$-aa, there arifes $\mathrm{DH}=$ $\frac{\text { tig }}{a i}$. It is alfo $\mathrm{BD}: \mathrm{DP}:: \mathrm{DH}: \mathrm{DC}=\frac{t^{3}}{a^{2}}=v$. Now by Prob. I. the Equations $2 a x-b x x=y y, a a-b y y+y y$ $=t t$, and $\frac{t^{3}}{a a}=v$, give $a-b x=y y$, and $j y-b j y$ $=\dot{i t}$, and $\frac{3 n^{2} \dot{t}}{a a}=\dot{v}$; thus \dot{v} being found, $\frac{i y}{t}$ the Index of the Inequability of Curvature will alfo be known.

Thus in the Ellypfis $2 x-3 x x=y y$; where it is $a=1, b=3$; if we make $x=\frac{1}{2}$, then $y=\frac{x}{2}, y=-1$, $t=\sqrt{\frac{x}{2}}, i=\sqrt{ }, \dot{v}=3 \sqrt{\frac{1}{2}}$; therefore $\frac{v y}{t}=\frac{3}{2}$, which is the Index of the Inequability of Curvature. Hence it appears that the Curvature of this Ellypfis, at the point D here affumed, is Two times lefs inequable, (or Two times more like to the Curvature of the Circle) than the Curvature of the Pa rabola at that Point of its Curve, from whence an Ordinate let fall upon the Axis is equal to half the Latus Rectum.
If we have a mind to compare the feveral conclufions obtained in thefe examples. In the Parabola $2 a x=y y$ arifes $\frac{v y}{t}=\frac{3 y}{a}$ for the Index of Inequability; in the Ellypfis, $2 a x-b x=y y$, arifes $\frac{i y}{t}=\frac{3 y-3 b y}{a a} \times \mathrm{BP}$, and fo in the Hyperbola $2 a x$ $+b x=y y$, (the analogy being obferved) there arifes the Index $\frac{i y}{t}=\frac{3 y+3 b y}{a a} \times \mathrm{BP}$. Hence it is found, that at the different points of any Conick Section

$$
P_{2}
$$

108 Of the Metbod of Fluxions

 confidered apart, the Inequability of Curvature is as the reetangle $\mathrm{BD} \times \mathrm{BP}$: And that at the feveral Points of the Parabola it is as the Ordinate BD.Now as the Parabola is the moft fimple Figure of thofe, that are curved with an Inequable Curvature, and as the Inequability of its Curvature is fo eafily determined; (for its Index is $\frac{6 \times \text { Ordinate }}{\text { Latus Refum }}$) therefore the Curvature of other Curves may not improperly be compared to the Curvature of this.

As if it were inquired what may be the Curvature of the Ellypfis $2 x-3 x x=y y$, at that Point of the perimeter, which is determined by affuming x $=\frac{\pi}{2}$; becaufe its Index is $\frac{3}{2}$ as before, it might be anfwered, that it is like the Curvature of the Parabola $6 x=y y$, at that Point of the Curve, between which and the Axis the Ordinate is equal to $\frac{3}{2}$.

Thus as the Fluxion of the Spiral ADE before defcribed is to the Fluxion of the fubtenfe $A D$ in a certain given ratio,
 fuppofe as d to e. On its concave fide erect $\mathrm{AP}=\frac{e}{\sqrt{d d-e e}} \times \mathrm{AD}$ perpendicular to AD , then P will be the Center of Curvature; and $\frac{\mathrm{AP}}{\mathrm{AD}}$ or $\frac{e}{\sqrt{d d-c e}}$ will be the Index of Inequability. So that this Spiral has every where its Curvature alike In. equable, in the fame form as the Parabola $6 x=y y$ in that point of its Curve, from whence to its Abfcifs or Bafe a perpendicular Ordinate is let fall, which is equal to the quantity $\frac{e}{\sqrt{d d^{2}-i t}}$.

And thus the Index of Inequability at any Point D of the Trochoid [See fig. pag. 88.] is found to be $\frac{A B}{B L}$. Wherefore its Curvature at the fame Point D is as inequable, or as unlike to that of the Circle, as the Curvature of any Parabola $a x=y y$ is, at the Point where the Ordinate is $\frac{2}{6} a=\frac{A B}{B L}$.

From thefe confiderations the fenfe of the Problem (I conceive) muft be plain enough; which being well underftood it will not be difficult for any one, who obferves the Series of the things above delivered, to furnifh himfelf with more examples; and to contrive many other methods of operation, as occafion may require. So that he will be able to manage Problems of a like nature (where he is not difcouraged by a tedious and perplexed calculation) with little or no difficulty. Such are thefe following.
I. To find the Point where there is eitber no Inequality of Curvature; or infinite; or the greateft; or the leaft. Tbus at the Vertices of the Conick Sections there is no Inequability of Curvature. At the Cu/pid of the Trocboid it is infinite. And it is greateft at that Point of the Ellypfis, where the Rectangle BD \times BP [See fig pag. 105.] is greateft; that is, where the Diagonal Lines of the circum cribed Parallelogram cut the Ellypfis, whofe fides touch it in the Principal Vertices
II. To determine a Curve of fome Definite Species, (fuppofe a Coni k Section.) whole Curvature at any Point may be Equal and Similar to the Curvature of anyotber Curve at a given Point of it.
III. To determine a Conick Section, at any point of which the Curvature and Pofition of the Tangent in refpect of the Axis, may be like to the Curvature and Pofition of the Tangent at a Point found of any

110 Of the Method of FLUXIONS

other Curve. The UJe of tbis Problem is this, that inftead of Ellyppes of the fecond Kind, wobofe properties of refrating light are explained by. Des Cartes in bis Geometry, Conick Sections may be Jubfituted, which will perform the fame thing very near as to their refraction. And the fame may be underftood of otber Curves.

Problem VII.

To find as many Curves as you pleafe, whofe Areas may be exbibited by finite Equations.

Let $A B$ be the Abrcifs of a Curve, at whofe Vertex A, let the Perpendicular AC=1 be raifed, and let CE be drawn parallel to
 AB. Let alfo DB be a Rectangular Ordinate, meeting the Right Line CE in E, and the Curve AD in D. And conceive thefe Areas ACEB and ADB to be generated by the Right Lines BE and BD, as they move along the line AB. Then their Increments or Fluxions will be alfo as the defcribed lines BE and BD . Wherefore make the Parallelogram ACEB or $\mathrm{AB} \times 1=x$, and the Area of the Curve ADB call z; then the Fluxions \dot{x} and \dot{z} will be as BE and BD , fo that make \dot{x} $=\mathrm{r}=\mathrm{BE}$, then $z=\mathrm{BD}$.

Now if any equation be affumed at pleafure for determining the relation between z and x, from thence by Prob. I. may z be derived. Thus there will be two Equations; the latter of which will determine the Curve; and the former its Area.

Examples.

Affume $x x=z$, thence by Рrob. I, $2 \dot{x} x=\dot{z}$, ot $2 x=z$, becaufe $x=1$.
Aflume $\frac{x^{3}}{a}=z$, thence will arife $\frac{3 x^{2}}{a}=\dot{z}$, an E quation to the Parabola.

Affume $a x^{3}=z z$ or $a^{\frac{x}{2}} x^{\frac{3}{2}}=z$, and there arifes $\frac{3}{2}$ $a^{\frac{1}{2} x^{\frac{1}{2}}}=\dot{z}$, or $\frac{9}{4} a x=\ddot{z}$, an Equation again to the Parabola.

Affume $a^{6} x^{-2}=z z$, or $a^{3} x^{-1}=z$, and there arifes $-a^{3} x^{2}=\dot{z}$, or $a^{3}+\dot{z} x x=0$. Here the negative value of \dot{z} only infinuates that BD is to be taken the contrary way from BE.

Again if you affume $c^{2} a^{2}+c^{2} x^{2}=z^{2}$, you will have $2 c^{2} x=2 z z$, and z being exterminated there will arife $\frac{c x}{\sqrt{a a+x x}}=\dot{z}$.

Or if you affume $\frac{a a+x x}{b} \sqrt{a a+x x}=z$, make $\sqrt{a a+x x}=v$, and it will be $\frac{v^{3}}{b}=z$, then by $\mathrm{P}_{\text {Rob. I. }}$. $\frac{3 \text { vvv }}{b}=\dot{z}$. Alfo the equation $a a+x x=v v$, gives $2 x=2 \dot{v}$, by the help of which, if you expunge \dot{v}, it will become $\frac{3 v x}{b}=\dot{z}=\frac{3 x}{b} \sqrt{a a-x x}$

Or if you affume $8-3 x z+\frac{2}{5} z=z z$; you will obtain $-3 z-3 x \dot{z}+-\frac{2}{5} \dot{z}=2 z \dot{z}$. Wherefore by the affumed equation firft feek the Area z; and the Ordinate z by the refulting equation.

And thus from the Areas which way foever found, you may always determine the Ordinate to which they belong.

II2 Of the Metbod of Fuxions

Problem ViII.

To find as many Curves as you pleafe, whole Areas werll have a relation to the Area of any given Circle, afignable by finite equations.

Let FDH be a given Curve, and GEI a Curve

required, and conceive their Ordinates to move
at right angles upon their Abfciffes or Bafes $A B$ and $A C$; then the Increment or Fluxions of the Areas which they defcribe, will be as thofe Ordinates drawn into their velocities of moving, that is, into the Fluxions of their Abfciffes. - Therefore make $\mathrm{AB}=x, \mathrm{BD}=v, \mathrm{AC}=z$, and $\mathrm{CE}=y$. The Area $\mathrm{AFDB}=s$, and the Area $\mathrm{AGEC}=t$, and let the Fluxions of the Areas be s and t; then it will be $\dot{x} v: z y:: s: i$. Therefore if we fuppofe $\dot{x}=\mathrm{r}$, and $v=\dot{s}$ as before, it will be $z \dot{z}=\dot{i}$, and thence
$\bar{z}=y$.
Therefore let any two Equations be affurned; one of which may exprefs the relation of the Areas s and t, and the other the relation of their Abfciffes x and z, and thence by Рrob. I. let the Fluxions \dot{x} and \dot{z} be found, and then make $\frac{i}{\dot{z}}=y$.

Example 1. Let the given Curve AFD be a Circle expreffed by the equation $a x-x x=v v$, and let other Curves be fought, whofe Areas may be equal to that of the Circle: therefore by Hy pothefis $s=t$, and thence $\dot{s}=\dot{t}$, and $y=\frac{i}{\dot{z}}=\frac{v}{\dot{z}}$.
It remains to determine \dot{z} by affuming fome relation between the Ab fiffes x and z.
As if you fuppofe $a x=z z$; then by Рrob. I. a $=2 \dot{z} z$; fo that fubftituting $\frac{a}{2 z}$ for \dot{z}, then $y=\frac{v}{z}$ $=\frac{2 v z}{a}$. But it is $v=\left(\sqrt{a x-x x} \Rightarrow \frac{z}{a} \sqrt{a a-z z}\right.$;
therefore $\frac{2 z z}{a a} \sqrt{a a-z z}=y$ is the Equation to the Curve whofe Area is equal to that of the Circle.

114 Of the Metbod of Fuuxions

After the fame manner, if you fuppofe $x x=x$, there will arife $2 x=\dot{z}$, and thence $y=\left(\frac{v}{\dot{z}}=\right) \frac{v}{2 x}$; whence v and x being exterminated, it will be $=\frac{\sqrt{a z^{\frac{1}{2}}-z}}{2 z^{\frac{1}{2}}}$.

If you fuppofe $c c=x z$, there arifes $0=z+x \dot{z}$, and thence $\frac{-v x}{z}=y=\frac{c^{3}}{z^{3}} \sqrt{a z-c c}$.

Again fuppofe $a x+\frac{s}{1}=z$, by Рrob. I. it is a $\dot{1} \dot{s}=\dot{z}$, and thence $\frac{v}{a+\dot{j}}=y=\frac{v}{a+v}$; which de. notes a Mechanical Curve.

Ex. 2. Let the Circle $a x-x x=v v$, be given again, and let Curves be fought, whofe Areas may have any other affumed relation to the Area - of the Circle. As if you affume $c x+s=t$, and fuppofe alfo $a x=z z$; by Prob I. it is $c \neq j=i$, and $a=2 \dot{z} z$; therefore $y=\frac{\dot{i}}{\dot{z}}=\frac{2 c z+2 s z}{a}$; and fubftituting $\sqrt{a x-x x}$ for \dot{s}, and $\frac{z z}{a}$ for x, it is $y=\frac{2 c z}{a}$ $+\frac{2 z z}{a a} \sqrt{a a-z z}$.

But if you affume $s-\frac{2 v^{3}}{3^{a}}=t$, and $x=z$, you will have $\dot{s}-\frac{2 \dot{v} v^{2}}{a}=\dot{i}$, and $1=\dot{z}$; therefore $y=$ $\frac{\dot{i}}{\dot{z}}=\dot{s}-\frac{2 v v^{2}}{a}$, or $=v-\frac{2 \dot{v} v v^{2}}{a}$. Now for expunging \dot{v}, the Equation $a x-x x=v v$ gives by Рrob. I. $a-2 x$ $=2 \dot{v}$, and therefore $y=\frac{2 v x}{6}$; where if you ex-
punge v and x by fubftituting their values $\sqrt{a x-x x}$, and z, there will arife $y=\frac{2 z}{a} \sqrt{a z-z z}$.
But if you affume $s s=t$, and $x=z z$, there will arife $2 j s=i$, and $\mathrm{I}=2 \dot{z} z$, and therefore $y=\frac{\dot{i}}{\dot{z}}=$ 4isz; then for s and x fubtituting $\sqrt{a x-x x}$ and $z z$, it will become $y=4 \delta z z \sqrt{a-z z}$, which is an equation to a Mechanical Curve.

Ex. 3. After the fame manner Figures may be found, which have any affumed relation to any other given Figures. Let the Hyperbola $c c+x x$ $=v r$ be given; then if you affume $s=t$, and $x x$ $=c z$, you will have $\dot{s}=\dot{i}$, and $2 x=c \dot{z}$; and thence $y=\frac{\dot{t}}{\dot{z}}=\frac{\dot{c}}{2 x}$. Then fubftituting $\sqrt{c c+x x}$ for \dot{s}, and $c^{\frac{1}{2}} z^{\frac{1}{2}}$ for x, it will be $y=\frac{c}{2 z} \sqrt{c z+z z}$.
And thus if you affume $x v-s=t$, and $x x=c z$; you will have $v+\dot{v} x-\dot{s}=\dot{t}$ and $2 x=c \dot{z}$; but $v=\dot{s}$, and thence $\dot{v} x=i$; therefore $y=\frac{i}{z}=\frac{c \dot{v}}{2}$. But now by Prob. I. $c c+x x=v v$, gives $x=v v$, and it is $y=$ $\frac{c x}{2 v}$; then fubftituting $\sqrt{c+x^{x} x}$ for v, and $c^{\frac{1}{2}} z^{\frac{1}{2}}$ for x it becomes $y=\frac{c z}{2 \sqrt{c z+z z}}$.

Ex. 4. Moreover if the Clffoid $\frac{x x}{\sqrt{a x-x x}}=v$ were given, to which other related Figures are to be found; and for that purpofe you affume $\frac{x}{3}$ $\sqrt{a x-x x}+\frac{2}{3} s=t$; fuppofe $\frac{x}{3} \sqrt{a x-x x}=h$, and its Q^{2}

Fluxion

116
 Of the Metbod of Fluxions

Fluxion to be \dot{b}; therefore $\dot{b}+\frac{2}{3} \dot{j}=i$, but the equation $\frac{a x^{3}-x^{4}}{9}=b b$ gives $\frac{3 a x^{2}-4 x^{3}}{9}=2 \dot{b} b$; where
 befides fince it is $\frac{2}{3} j=\frac{2}{3} v=\frac{4 x x}{6 \sqrt{a x-x x}}$, it will be $\frac{a x}{2 \sqrt{a x-x x}}=i$. Now to determine z and \dot{z}, affume $\sqrt{a a-x x}=z$, and then by Prob. I. $-a=2 \dot{z}$, or $\dot{z}=\frac{-a}{2 z}$. Wherefore it is $y=\frac{i}{\dot{z}}=\frac{-x x}{\sqrt{a x-x x}}=\sqrt{\frac{2 z x}{a-x}}$ $=\sqrt{ } a x=\sqrt{a a-z z}$; and as this equation belongs to the Circle, we fhall have the relation of the Areas of the Circle and the Ciffoid.

Thus if you had affumed $\frac{2 x}{3} \sqrt{ } a x-x x+\frac{1}{3} s=t$, and $x=z$, there would have been derived $y=$ $\sqrt{a z-z z}$, an Equation again to the Circle.

In like manner, if any Mechanical Curve were given, other Mechanical Curves related to it might have been found. But to derive Geometrical Curves, it will be convenient, that of Right Lines depending geometrically on each other, fome one may be taken for the Bafe or Abfcifs; and that the Area, which compleats the parallellogram, be fought, by fuppofing its Fluxion to be equiva: lent to the Abfcifs drawn into the Fluxion of the Ordinate.

Ex. 5. Thus the Trochoid ADF being propofed, I refer it to the $A b$ fcifs $A B$, and the p^{2} ralliellogram ABDG being compleated, I feek for the complemental Super ficies $A D G$, by fuppofing it to be defcribed by the motion of the right line GD drawn into the velocity of the motion, that is $\alpha \times \dot{v}$. Now whereas AL is parallel to the Tan-
gent DT: Therefore AB will be to BL , as the Fluxion of the fame $A B$ to the Fluxion of the

Ordinate BD , that is, as \mathbf{I} to \dot{v}; fo that $\dot{v}=\frac{B L}{\mathrm{AB}}$, and therefore $x \dot{v}=\mathrm{BL}$. Therefore the Area ADG is defcribed by the Fluxion BL.; and fince the Circular Area ALB is defcribed by the fame Fluxion they will be equal.

In like manner if you conceive ADF to be a Figure of Arches, or of verfed fines, that is, whofe Ordinate BD is equal to the Arch AL. Since the Fluxion of, the Arch AL is to the Fluxion of the Abfcifs AB , as PL to BL , that is $\dot{v}: 1:: \frac{x}{2} a$: $\sqrt{a x-x x}$, then $\dot{v}=\frac{a}{2 \sqrt{a x-x x}}$: and $\dot{v} x$ the Fluxion of the Area ADG will be $\frac{a x}{2 \sqrt{a x-x x}}$. Wherefore if a Right Line $=\frac{a x}{2 \sqrt{a x-x x}}$ be conceived to be applied as a rectangular Ordinate at B , a point of the line $A B$, it will be terminated at a certain Geo-

18 Of the Method of Fiuxions
Geometrical Curye, whofe Area adjoining to the Abfcifs $A B$ is equal to the Area ADG.

And thus Geomecrical Figures may be found, equal to other Figures made by the application (in any angle) of arches of a Circle, of an Hyperbola, or of any other Curve, to the Sines, right or verfed, of thofe arches; or to any other Right Lines, that may be geometrically determined.

As to Spirals the matter will be very fhort. For from the Center of Rotation A the arch DG that meets AF in G , and the Spiral in D; fince
 that arch like a line moving upon the Abfciis AG defcribes the Area of the Spiral AH DG, fo that the Fluxion of that Area is to the Fluxion of the Rectangle $I \times A G$, as the Arch GD to I; if you raife the perpendicular right line GL. equal to that arch, this by moving in like manner upon the fame $A G$, will defribe the Area ALG equal to the Area of the Spiral AHDG, the Curve All, being a Geometrical Curve. And further, if the Subtenfe AL be drawn, then the Triangle $A L G=\frac{1}{2} A G \times G L$ $=\frac{1}{2} A G \times G D=$ Sector $A G D$. Therefore the complemental fegments ALI, ADH, will alfo be equal. -And this agrees not only to the Spiral of Arccimedes, (in which cafe AlL becomes the Parabola of Apollonius;) but to any other whatfoever; that is, all of them may be converted into equal Geometrical Curves with the fame eafe.

I might have produced more Specimens of the Conftruation of this Problem, but thefe may fuf-
fice, as being fo general, that whatever has yet been found out concerning the A reas of Curves, or (I believe) can be found out, is in fome manner contained herein, and is here determined withlefs trouble, and without the ufual perplexities.
But the chief ufe of this, and the foregoing Problems is, that affuming the Conick Sections, or any other Curves of any known magnitude, other Curves may be found out that may be compared with thefe; and that their defining equations may be difpofed orderly in a Catalogue or Table. That after fuch a Table is conftructed, when the Area of any Curve is to be found; if its defining equation may either be found in the Table, or may be transformed into anocher, that is contained in the Table; then the Area may be known. Moreover fuch a Catalogue or Table may be applied to the determining of the Lengths of Curves; to the finding of their Centers of Gravity; their Solids by their Rotation ; the Superficies of thofe Solids; or to the finding of any other Flowing Quantities produced by a Fluxion analogous to it.

Problem IX.

To determine the Area of any Curve propofed.

The Refolution of the Problem depends upon this; that from the relation of the Fluxions being given, the relation of the Fluents may be found, as in Prob. II. Firft if the Right Line BD, by the motion of which the Area required AFDB is difcribed, move upright upon an Ab -
 fcifs or Bafe AB given in pofftion, conceive (as before) the parallelogram ABEC to be defcribed in the mean time on the other fide BE by a Line equal
equal to 1 , and BE being fuppofed equal to the Fluxion of the Parallelogram, BD will be the Fluxion of the Area required.

Therefore make $\mathrm{AB}=x$, then $\mathrm{ABEC} \times \mathrm{I}=1 \times *$ $=x$, and $\mathrm{BE}=\dot{x}$, call $\mathrm{AFDB}=z$, and it will be $\mathrm{BD}=\dot{z}$, as alfo $\frac{z}{\dot{x}}$, becaufe $\dot{x}=1$; therefore by the equation expreffing BD , at the fame time the ratio of the Fluxion $\frac{z}{x}$ is expreffed, and thence (by Prob. II. Cafe I.) may be found the relation of the Flowing Quantities x and z.

Example I. When BD or \dot{z} is equivalent to fome fimple 2uantity.
Let there be given $\frac{x \dot{x}}{a}=\dot{z}$, or $\frac{\dot{z}}{\dot{x}}$, the equation to the Parabola; and (by $\mathrm{P}_{\text {rob. II.) }}$) there will arife - $\frac{x^{3}}{3 a}=z$; therefore $\frac{x^{3}}{3 a^{a}}$, or $\frac{1}{3} \mathrm{AB} \times \mathrm{BD}$ is equal to the Area of the Parabola AFDB.
Let there be given $\frac{x^{3}}{a a}=\dot{z}$, an equation to the Parabola of the fecond kind, and there will arife $\frac{x^{4}}{4 a^{a^{2}}}=z$; that is $\frac{1}{4} \mathrm{AB} \times \mathrm{BD}=$ area AFDB.
Let there be given $\frac{a^{3}}{x x}=\dot{z}$, or $a^{3} x^{-2}=z$, an e quation to an Hyperbola of the fecond kind, and there will arife $-a^{3} x^{-1}=z$, or $\frac{-a^{3}}{x}=\dot{z}$; that is $\mathrm{AB} \times \mathrm{BD}=$ Area HDBH [See Fig. pag.124.] of an infinite length on the other fide the Ordinate, as its negative value intimates.

Thus if there were given $\frac{a^{4}}{x^{3}}=\dot{z}$, there will arife $\frac{-a^{4}}{2 \times x}=z$

Moreover, let $a x=\dot{z} \dot{z}$, or $a^{\frac{1}{2}} x^{\frac{1}{2}}=\dot{z}$; (an equation again to the Parabola,) and there will arife $\frac{2}{3} a^{\frac{1}{2}} x^{\frac{3}{2}}=z$; that is $\frac{2}{3} \mathrm{AB} \times \mathrm{BD}=$ Area AFDB.
Let $\frac{a^{3}}{x}=\ddot{z} \ddot{z}$; then is $2 a^{\frac{3}{2}} x^{\frac{1}{2}}=z$, or $2 \mathrm{AB} \times \mathrm{BD}$ $=\mathrm{AFDH}$.
Let $\frac{a^{\frac{5}{3}}}{x^{3}}=\ddot{z}$; then $\frac{-2 a^{\frac{5}{2}}}{x^{\frac{1}{2}}}=z$, or $2 \mathrm{AB} \times \mathrm{BD}=$

HDBH.

Let $a x^{2}=\dot{z}^{3}$; then $\frac{3}{5} a^{\frac{x}{3}} x^{\frac{5}{3}}=z$; or $\frac{3}{5} \mathrm{AB} \times \mathrm{BD}=$ AFDH. And fo in others.

Ex. 2. Where z is equal to an aggregate of fuch quantities.

Let $x+\frac{x x}{a}=\dot{z}$; then $\frac{x x}{2}+\frac{x x x}{3 a}=z$.
Let $a+\frac{a^{3}}{x x}=\ddot{z}$; then $a x-\frac{a^{3}}{x}=z$.
Let $3 x^{\frac{1}{2}}-\frac{5}{x x}-\frac{2}{x^{\frac{1}{2}}}=\dot{z}$; then $2 x^{\frac{x}{2}}+\frac{5}{x}=4 x^{\frac{2}{2}}$ $=z$.

Ex. 3. Where a previous Reduction by Divifion is required.
Let there be given $\frac{a a}{b+x}=\dot{z}$, (an equation to the Apollonian Hyperbola) and the divifion being performed in infinitum, it will be $\dot{z}=\frac{a a}{b}-\frac{a a x}{b^{2}}+\frac{a a x^{2}}{b^{3}}$ $-\frac{a a x^{3}}{b^{4}}, \mathcal{E}^{2}$. And thence (by Prob. II. as in Ex. 2.) you will obtain $z=\frac{a^{2} x}{b}-\frac{a^{2} x^{2}}{2 b^{2}}+\frac{a^{2} x^{3}}{3^{3}}-\frac{a^{2} x^{4}}{4^{b 4}}, \xi^{2} c$.

Let there be given $\frac{1}{1+x x}=\dot{z}$; by divifion it

122 Of the Method of Fluxions
will be $\dot{z}=1-x^{2}+x^{4}-x^{6}, \mathcal{E}^{2} c$. and thence (by Prob. II.) $z=x-\frac{1}{3} x^{3}-1 \frac{1}{5} x^{5}-\frac{1}{7} x^{7}, \mathcal{E}^{2} c$. or elf z $=\frac{1}{x^{2}}-\frac{1}{x^{4}}+\frac{1}{x^{6}}$, and thence again by (PROB. IL.) $z=-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{-5}}$, Ec. $^{2}=\mathrm{HDBH}$.

Let there be given $\frac{2 x^{\frac{1}{2}}-x^{\frac{3}{2}}}{1-1-x^{\frac{1}{2}}-3 x}=\dot{z}$; by divifion it will be $\dot{z}=2 x^{\frac{1}{2}}-2 x+7 x^{\frac{3}{2}}-13 x^{2}+34 x^{\frac{5}{2}}$, and thence (by Р rob. II.) $z=\frac{4}{3} x^{\frac{3}{2}}-x^{2}+\frac{15}{5} x^{\frac{5}{2}}-\frac{13}{3} x^{3}$ $+\frac{69}{7} x^{\frac{7}{2}}, \xi^{2} c$.

Ex. 4. Where a previous Reduction is required by extraction of Roots.

Let there be given $z=\sqrt{a a+x x}$, (an Equation to the Hyperbola,) and the root being extracted to an infinite number of terms, it will be $z=a+\frac{x^{2}}{2 a}+\frac{x^{4}}{8 a^{3}}$ $+\frac{x^{6}}{16 a^{5}}-\frac{5 x^{8}}{112 a 7^{7}}$, whence, as in the foregoing, $z=$ $a x+\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}+\frac{x^{7}}{112 a^{5}}-\frac{5 x^{9}}{1008 a^{9}}, \mathcal{E}^{2}$.

In the fame manner, if there were given $\dot{z}=$ $\sqrt{a a-x x}$, (which is to the Circle,) there would be produced $z=a x-\frac{x^{3}}{6 a}-\frac{x^{5}}{40 a^{3}}-\frac{x^{7}}{112 a^{5}}-\frac{5^{x^{9}}}{1008 a^{7}}, \mathcal{E}^{3} c$.

And $f o$ if there were given $\dot{z}=\sqrt{x-x x}$, (an equaton alfo to the Circle,) by extracting the root, there would a rife $\dot{z}=x^{\frac{1}{2}}-\frac{1}{2} x^{\frac{3}{2}}-\frac{1}{8} x^{\frac{5}{2}}-\frac{1}{16} x^{\frac{7}{2}}, \varepsilon \varepsilon c$. and therefore $z=\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{2} \frac{1}{8} x^{\frac{7}{2}}-\frac{1}{7} \frac{1}{2} x^{\frac{9}{2}}, \varepsilon \mathcal{E}^{2}$.

Thus $\dot{z}=\sqrt{a a+b x-x x}$, (an equation again to the $\left.\begin{array}{c}\text { Circle, } \\ b x\end{array}\right)$ by extracting of the root, gives $\dot{z}=a$ $+\frac{b x}{2 a}-\frac{x x}{2 a}-\frac{b^{2} x^{2}}{8 a^{3}}, \delta \mathcal{G} c$. whence $z=n x+\frac{b x^{2}}{4^{2}}$ $-\frac{x^{3}}{6 a}-\frac{b^{2} x^{3}}{24 a^{3}}, \mathcal{E}_{c}$

And thus $\sqrt{\frac{1+a x x}{1-b x x}}=\dot{z}$, by a due reduction gives
$:=1 \frac{1}{2} b x^{2}+\frac{3}{3} b b x^{4}, \Xi^{3} c$. wence $z=x+\frac{1}{6} b x^{3}+\frac{3}{4} b b b x^{5}, \Xi^{3} c$.
$-\frac{1}{5} a a$

$$
\begin{array}{r}
-\frac{1}{6} a \begin{array}{r}
\frac{1}{20} a b \\
-\frac{1}{40} a a
\end{array}, ~
\end{array}
$$

Thus finally, $\dot{z}=\sqrt[3]{a^{3}+x^{3}}$ by the extraction of the cubick root, gives $\dot{z}=a-\frac{x^{3}}{3 a^{2}}-\frac{x^{6}}{9 a^{5}}+\frac{5 x^{9}}{81 a^{8}}, \quad$ छcc. and then by Рrob. II. $z=a x+\frac{x 4}{12 a^{2}}-\frac{x 7}{63^{5}}+\frac{x^{10}}{162 a^{8}}$ \mathcal{B}_{c}. $=\mathrm{AFDB}$; or elfe $\dot{z}=x+\frac{a^{3}}{3 x x}-\frac{a^{6}}{9 x^{5}}+\frac{5 a^{9}}{81 x^{8}}$, Ec. and thence $z=\frac{x^{2}}{2}-\frac{a^{3}}{3 x}+\frac{a^{6}}{36 x^{4}}-\frac{5 a^{9}}{567 x^{7}}, \mathcal{V}^{7} c$. $=\mathrm{HDBH}$.

Ex. 5. Where a previous Reduction is required by the refolution of an affected equation.

If a Curve be defined by this Equation $\dot{z}^{3}+a^{2} z$ $-a x z-2 a^{3}-x^{3}=0$; extract the root, and there will arife $\dot{z}=a-\frac{x}{4}+\frac{x x}{6+a}+\frac{131 x^{3}}{512 a a}$, whence will be obtained as before $z=a x-\frac{x x}{8}+\frac{x^{3}}{192 a}+\frac{131 x^{4}}{2048 a^{2}}, ~ छ c c$. But if $\dot{z}^{3}-c \dot{z}^{2}-2 x^{2} \dot{z}-c^{2} \dot{z}+2 x^{3}+c^{3}=0$ were the equation to the Curve, the refolution will yield a Threefold Root; either $\dot{z}=c+x-\frac{x x}{4 c}+\frac{x^{3}}{3 c^{2}}, \varepsilon^{3} c$. or $\dot{z}=c-x+\frac{3 x^{2}}{4 c}-\frac{15 x^{3}}{32 c c}, \mathcal{E}^{2} c$. or $\dot{z}=-c-\frac{x^{2}}{2 c}$ $-\frac{x^{3}}{2 c c}+\frac{x^{5}}{4 c^{4}}$; and hence will arife the values of the Three correfponding Areas, $z=c x+\frac{1}{2} x^{2}-\frac{x^{3}}{126}+$ $\frac{x^{4}}{128 c^{2}}, \xi^{3} c . z=c x-\frac{x}{2} x^{2}+\frac{x^{3}}{4 c}-\frac{15 x^{4}}{128 c^{2}}, \xi^{3} c$. and $z=$ -cx- $\frac{x^{3}}{6 c}-\frac{x^{4}}{8 c^{2}}+\frac{x^{6}}{2 c^{4}}, \Xi^{2} c$.

124 Of the Method of Fiuxions
I add nothing concerning Mechanical Curves, becaufe their reduction to the form of Geometrical Curves will be taught afterwards.

But whereas the values of z thus found, belong to Areas, which are fituate, fometimes at a finite part, AB , of the Bafe or Abfcifs ; fometimes at a part BH , produced infinitely towards H ; and fometimes to both parts ; according to their different terms: That the Due Value of the Area may be found, adjacent to any portion of the Abfcifs; That Area is always to be equal to the different values of z, which belong to the parts of the Abfcifs , that are terminated at the beginning and end of the Area:

An Instance: To the Curve expreffed by the equation $\frac{1}{1+x x}=\dot{z}$, it is found that $z=x-\frac{1}{3} x^{3}$ $+\frac{1}{5} x^{5}, \mathcal{E}^{2}$. Now that you may determine the
quantity of the Area $b d \mathrm{DB}$ adjacent to the part of the Bafe $b B$; from the value of z which arifes by putting $\mathrm{AB}=\mathrm{X}$, take the value of z which arifes by putting $\mathrm{A} b=x$, (for diftinction fake writing X for AB and x for Ab,) and there is produced $\mathrm{X}+\frac{x}{3} \mathrm{X}^{3}$ $+\frac{1}{5} \mathrm{X}^{5}, \mathcal{E}^{2} c .-x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}, \mathcal{E}^{3} c_{c}=b d \mathrm{DB}$.

To the fame Curve there is alfo found $z=-\frac{1}{x}$ $+\frac{x}{3} x^{3}-\frac{1}{5} x^{5}, \mathcal{J}^{2} c$. whence again, according to what is before obferved, the Area $b d \mathrm{DB}=\frac{1}{x}-\frac{1}{3^{x^{3}}}+$

$$
\frac{1}{5 x^{5}}, \varepsilon^{2} c .-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}, \varepsilon_{c} \text {. therefore it } A B
$$

or X be fuppofed infinite, the adjoining Area $b d \mathrm{H}$ towards H , which is alfo infinitely long, will be equivalent to $\frac{1}{x}-\frac{1}{3 x^{3}}+\frac{1}{5 x^{3}}, \delta^{2} c$. for the latter feries $-\frac{1}{X}+\frac{1}{3 X^{3}}-\frac{1}{5 X^{5}}, \mathcal{E}^{2} c$. will vanifh becaufe of its infinite denominators.

To the Curve reprefented by the equation $a+$ $\frac{a^{3}}{x x}=\dot{z}$, it is found that $z=a x-\frac{a^{3}}{x}$, whence it is that $a \mathrm{X}-\frac{a^{3}}{\mathrm{X}}-a x+\frac{a^{3}}{x}=$ Area $b d \mathrm{DB}$. To the Curve reprefented by the equation $a+\frac{a^{3}}{x x}=\dot{z}$, it is found that $z=a x-\frac{a^{3}}{x}$. Whence it is, that $a X=\frac{a^{3}}{X}-a x$ $+\frac{a^{3}}{x}=$ Area $b d \mathrm{DB}$; but this becomes infinite, whether x be fuppofed nothing, or X infinite; and therefore each Area, AFDB, and $b d \mathrm{H}$, can be exhibited. And this always happens, when the $\}$ Abfcifs x is found as well in the Numerators of fome of the terms, as in the Denominators of others of the value of z. But when x is only found in the Numerators, as in the firft example, the value of z belongs to the Area fituate at $A B$ on this fide the Ordinate; and when it is only in the Denominators, as in the fecond example, that Value, when the figns of all the terms are changed, belongs to the whole Area infinitely produced beyond the Ordinate.

If at any time the Curve Line cuts the Bafe or Abfcifs between the points b and B fuppofe in E, inftead of the Area

will be had the difference $b d \mathrm{E}-\mathrm{BDE}$ of the Areas
at the different parts of the Bafe, to which if there be added the Rectangle BDG b, the Area $d \mathrm{EDG} b$ will be obtained.

But here it is chiefly to be regarded, that when in the value of \dot{z}, any term is divided by x of only one dimenfion, the Area correfponding to that term belongs to the Conical Hyperbola, and therefore may be exhibited by itfelf in an infinite feries; as is done in what follows.

Let $\frac{a^{3}-a^{2} x}{a x-+x x}=\dot{z}$ be an equation to a Curve; by divifion it becomes $\dot{z}=\frac{a a}{x}-2 a \frac{1}{1} 2 x-\frac{2 x^{2}}{a}+\frac{2 x^{3}}{a a}$, Ec. and thence $z=\left|\frac{\overline{a a}}{x}\right|-2 a x+-x^{2}-\frac{2 x^{3}}{3 a}+\frac{x^{4}}{2 a^{2}}$, $\mathcal{E}^{2} c$. and the Area $b d \mathrm{DB}=\left|\frac{\overline{a a}}{\mathrm{X}}\right|-2 a \mathrm{X}+\mathrm{X}^{2}-$ $\frac{2 \mathrm{X}^{3}}{3 a}, \varepsilon^{2} c .-\frac{a a}{x}+2 a x-x x+\frac{2 x^{3}}{3 a}, \mathcal{V}^{2} c$. Where by the marks, $\left|\frac{\overline{a a}}{x}\right|$, and $\left|\frac{\overline{a a}}{\underline{x}}\right|, I$ denote the little A reas belonging to the terms $\frac{a a}{\mathrm{X}}$ and $\frac{a a}{x}$.

Now that $\left|\frac{\overline{a a}}{\underline{x}}\right|$ and $\left|\frac{\overline{a a}}{x}\right|$ may be found; I make $\mathrm{A} b$ or x to be definite, and $b \mathrm{~B}$ indefinite or a Flowing Line, which therefore I call unity; fo that it will be $\left|\frac{\frac{a a}{x+y}}{\frac{1}{y}}\right|$ equal to that Hyperbolical Area adjoining to $\dot{b} \mathrm{~B}$; that is $\left|\frac{\bar{a}}{\mathrm{X}}\right|-\left|\frac{\overline{a a}}{x}\right|$. But by divifion it will be $\frac{a a}{x+y}=\frac{a a}{x}-\frac{a^{2} y}{x^{2}}+\frac{a^{2} y^{2}}{x^{3}}-\frac{a^{2} y^{3}}{x^{4}}$,
Sc. and therefore $\left|\frac{\frac{a a}{x+y_{i}}}{\mid}\right|$, or $\left|\begin{array}{l}\overline{a a} \\ \frac{x}{x}\end{array}\right|-\left|\frac{\overline{a a}}{\frac{x}{x}}\right|=\frac{a^{2} v}{x}$
$-\frac{a^{2} y^{2}}{2 x^{2}}+\frac{a^{2} y^{3}}{3 x^{3}}-\frac{a^{2} y^{4}}{4 x^{4}}, \delta^{2} c$. confequently the whole Area required $b d \mathrm{DB}=\frac{a^{2} y}{x}-\frac{a^{2} y^{2}}{2 x^{2}}+\frac{a^{2} y^{3}}{3 x^{3}}, \delta^{2} c$. $2 a \mathrm{X}+\mathrm{X}^{2}-\frac{2 \mathrm{X}^{3}}{3 a}, \delta^{3} c .+2 a x-x^{2}+\frac{2 x^{3}}{3 a}, \mathcal{V}^{2} c$. After the fame manner AB or X might have been u fed for a definite Line, and then it would have been $\left|\frac{\bar{a}}{\mathrm{X}}\right|-\left|\frac{a a}{\underline{x}}\right|=\frac{a^{2} y}{\mathrm{X}}+\frac{a^{2} y^{2}}{2 \mathrm{X}^{2}}-\frac{a^{2} y^{3}}{3 \mathrm{X}^{3}}+\frac{a^{2} y^{4}}{4 \mathrm{X}^{4}}$, छ๘.
Moreover if $l \mathrm{~B}$ be bifected in $\mathrm{C},^{*}$ and AC be ${ }_{p .124}^{*}$ Fig. affumed to be of a definite length, and Cb, CB indefinite ; then making $\mathrm{AC}=e$, and $\mathrm{C} b$ or $\mathrm{CB}=y$, it will be $b d=\frac{a a}{e-y}=\frac{a a}{e}+\frac{a^{2} y}{e^{2}}+\frac{a^{2} y^{2}}{e^{3}}+\frac{a^{2} y^{3}}{e^{4}}+\frac{a^{2} y^{4}}{e^{4}}$, \mathcal{E}^{2}. and therefore the Hyperbolick area adjacent to the part of the Abfcifs $b \mathrm{C}$ will be $\frac{a^{2} y}{e}+\frac{a^{2} y^{2}}{2 e^{2}}$ $+\frac{a^{2} y^{3}}{3^{e^{3}}}+\frac{a^{2} y^{4}}{4 e^{4}}, \quad छ c$. It will be alfo $\mathrm{DB}=\frac{a a}{e+y}$, $=\frac{a a}{e}-\frac{a a y}{e^{2}}+\frac{a a y^{2}}{e^{3}}-\frac{a a y^{3}}{e^{4}}+\frac{a a y^{4}}{e^{5}}, \mathcal{E}^{2} c$. and therefore the Area adjacent to the other part of the Abfcifs $\mathrm{CB}=\frac{a^{2} y}{e}-\frac{a^{2} y^{2}}{2 e^{2}}+\frac{a^{2} y^{3}}{3 e^{3}}-\frac{a^{2} y^{4}}{4 e^{4}}+\frac{a^{2} y^{5}}{5 e^{5}}, \quad$ Ec. and the fum of thefe Areas $\frac{2 a^{2} y}{e}+\frac{2 a^{2} y^{3}}{3 e^{3}}+\frac{2 a^{2} y^{5}}{5 e^{s}}$, Ec. will be equivalent to $\frac{\overline{a a}}{\underline{x}}\left|-\frac{a a}{x}\right|$.

Thus in the equation $\dot{z}^{3}+\dot{z}^{2}+\dot{z}-x^{3}=0$ denoting the nature of a Curve, its root will be $\dot{z}=x$ $-\frac{7}{3}-\frac{2}{9 x}+\frac{7}{81 x x}+\frac{5}{81 x^{3}}, \delta^{2} c$. whence there arifes $z=\frac{1}{2} x x-\frac{1}{3} x-\overline{\frac{2}{9 x}}-\frac{7}{81 x}-\frac{5}{162 x x}, \mathcal{E}_{6}$. and the

Area $b d \mathrm{DB}=\frac{x}{2} \mathrm{X}^{2}-\frac{1}{3} \mathrm{X}-\overline{\frac{2}{9 \mathrm{X}}}-\frac{7}{81 \mathrm{X}}$, Erc. $-\frac{1}{2} x x^{2}$ $+\frac{1}{3} x+\overline{\left|\frac{2}{9^{x}}\right|}+\frac{7}{81 x}$, छc. i. e. $=\frac{1}{2} X^{2}-\frac{1}{3} \mathrm{X}$
$-\frac{7}{81} \mathrm{X}, \varepsilon \delta^{c} c_{0}-\frac{1}{2} x^{2}+\frac{1}{3} x+\frac{7}{8 x} x, \varepsilon \delta^{2} c .-\frac{4 y}{9 e}-\frac{4 y^{3}}{2 \gamma^{3}}$ $-\frac{4 y^{5}}{45^{5}}, \varepsilon^{2} c$.

But this Hyperbolick term for the moft part may be very commodiounly avoided, by altering the beginning of the Abfcifs; that is, by increafing or diminifhing it by fome given quantity. As in the former Example, where $\frac{a^{2}-a^{2} x}{a x+x x}=\dot{z}$ was the equation to the Curve; if I would make b to be the beginning of the Abfcifs, fuppofing $A b$ to be of any determinate length, viz. $\frac{x}{2} a$, for the remainder of the $\mathrm{Abfcifs} b \mathrm{~B}$, I fhall now write x : fo that, if I diminih the Abfcifs by $\frac{x}{2} a$, by writing $x+\frac{1}{2} a$ in-

1) ftead of x, it will become $\frac{\frac{1}{2} a^{3}-a^{2} x}{\frac{3}{4} a^{2}+2 a x+x^{2}}=\dot{z}$; and by divifion $\dot{z}=\frac{2}{3} a-\frac{23}{9} x+\frac{200 x^{2}}{27 a}, \xi \delta c$. whence arifes $z=\frac{2}{3} a x-\frac{14}{9} x^{2}+\frac{200 x^{3}}{81 a}, \mathcal{E}^{2} c .=b d \mathrm{DB}$.

Alfo the equation $\frac{a^{3}-a^{2} x}{a x+x x}=\dot{z}$ might have been refolved into the Two infinite feries, $\dot{z}=\frac{a^{3}}{x^{2}}-\frac{a^{4}}{x^{3}}+$ $\frac{a^{5}}{x^{4}}, \varepsilon^{c} c .-a+x-\frac{x x}{a}+\frac{x^{3}}{a^{2}}, \varepsilon^{c} c$. where there is found no term divided by the firft power of x.

But fuch kind of feries, where the powers of x afcend infinitely in the numerators of one, and in the denominators of the other, are not fo proper to derive the value of z from by Arithmetical Computation, when the fpecies are to be changed into Numbers.

and Infinite Series.

Scarce any difficulty can occur to any one, who is to undertake fuch a computation in Numbers, after the value of the Area is obtained in fpecies. Yet for the more compleat illuftration of the foregoing doctrine, I fha!l add an Example or Two.
Let the Hyperbola AD be propofed, whofe equation is $\sqrt{x+x x}=z$, its vertex being at A, and each of its Axes equal to unity; from what goes before, its Area $\mathrm{ADB}=\frac{2}{3} x^{\frac{3}{2}}+\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{2} 8 x^{\frac{7}{2}}+\frac{1}{72} x^{\frac{9}{2}}$ $-\frac{5}{704} x^{\frac{11}{2}}, \mathcal{E}^{2}$. that is, $x^{\frac{1}{2}}$ into $\frac{2}{3} x+\frac{1}{5} x^{2}-\frac{1}{28} x^{3}$ $+\frac{r}{72} x^{4}-\frac{5}{104} x^{5}, \mathcal{E}^{c} c$. which feries may be infinitely produced by multiplying the laft termcontinually by the fucceeding terms of this progreffion, $\frac{1.3}{2.5} x$ $\frac{-1.5}{4.7} x \cdot \frac{-3.7}{6.9} x \cdot \frac{-5.9}{8.11} x$. $\frac{-7.11}{10: 13} x, \delta^{2} c$. that is, the

firft term $\frac{2}{3} x^{\frac{3}{2}}$ multiplied by $\frac{1.3}{2.5} x$, makes the fecond.term $\frac{1}{5} x^{\frac{5}{2}}$; which multiplied by $\frac{-1.5}{4.7} x$, makes the third term $\frac{-1}{28} \frac{7}{x^{2}}$; which multiplied by $\frac{-3 \cdot 7}{6.9}$, makes the fourth term $+\frac{x}{72} x^{\frac{2}{2}}$. And fo on ad infinitum.
Now let $A B$ be affumed of any length, fuppore $\frac{1}{4}$, and writing this number for x, and its root $\frac{\pi}{2}$ for $x^{\frac{1}{2}}$, the firft term $\frac{2}{3} x^{\frac{3}{2}}$ or $\frac{2}{3} \times \frac{\frac{1}{8}}{8}$ being reduced to a decimal fraction, becomes 0.083333333 , V_{c} c. this into $\frac{1.3}{2.5 \cdot 4}$ makes 0.00625 the fecond term ; this into $\frac{-1.5}{4.7 .4}$ makes 0.0002790178 , $\mathrm{F}_{\mathrm{c}} \mathrm{c}$, the third term. And fo on for ever. But

130 Of the Method of Fluxions the terms thus reduced by degrees, I difpofe into Two Tables ; the affirmative terms in One, and the Negative in Another, and add them up as you fee here.

+0.0833333333333333	-0.0002790178571429	
62500000000000	34679066051	
271267361111	834465027	
5135169396	26285354	
144628917	961296	
4954581	3876	
190948	1663	
7963	75	
352	4	
16	1	0.0002825719389575
0.0896109885646618		
0.0896109885646618	+0.0893284166257043	

Then from the fum of the affirmative, I take the fum of the negative terms, and there remains 0.0893284166257043 for the quantity of the Hyperbolick Area AdB which was to be found.

Let the Circle $\mathrm{Ad} \mathbf{F}$ [See the Jame Fig.] be propofed, which is expreffed by the equation $\sqrt[3]{x-x x}=\dot{z}$, whofe diameter is unity; and from what goes before its Area Ad B will be $\frac{2}{3} x^{\frac{3}{3}}$ - $\frac{5}{5} x^{\frac{5}{2}}$ $-\frac{1}{2} x^{\frac{7}{2}}-\frac{1}{12} x^{\frac{2}{2}}, \mathcal{V}^{3} c$. in which feries, fince the terms do not differ from the terms of the feries which above expreffed the Hyperbolick Area, except in the figns + and - ; nothing elfe remains to be done, than to connect the fame numeral terms with their figns; that is, by fubtracting the connected fums of both the forementioned Tables, 0.0898935605036193 , from the firft term doubled $0.1666666666666666, \mathcal{E}^{2} c$. and the remainder o. 0767731061630473 will be the portion $A d B$ of the Circular Area, fuppofing $A B$ to be a fourth
patt of the Diameter. And hence we may oblerve, that though the Areas of the Circle and Hyperbola are not expreffed in a Geometrical confideration, yet each of them is difcovered by the fame Arithmetical computation.
The portion of the Circle $\mathrm{A} d \mathrm{~B}$ being found, from thence the whole Area may be derived. For the radius $d \mathrm{C}$ being drawn, multiply $\mathrm{B} d$ or $\frac{1}{4} \sqrt{ } 3$ into BC or $\frac{x}{4}$, and one half of the product $\frac{\pi}{32} \sqrt{3}$, or 0.0541265877365275 will be the value of the Triangle $\mathrm{C} d \mathrm{~B}$; which added to the Area $A d \mathrm{~B}$, will give the Sector ACd, 0.1308996938995747; the Sextuple of which 0.7853981633974482 is the whole Area.

And hence (by the way) the length of the Circumference will be 3 . 1415926535897928 , which is found by dividing the Area by a fourth part of the diameter.

To this we fhall add the calculation of the Area comprehended between the Hyperbola 2 FD and its Afymptote CA, let C be the center of the Hy perbola, and putting $\mathrm{CA}=a, \quad \mathrm{AF}=b$, and $\mathrm{AB}=\mathrm{A} b=x$; it will be $\frac{a b}{a+x}=\mathrm{BD}$, and $\frac{a b}{a-x}$ $=b d$; whence the Area $\mathrm{AFDB}=b x-\frac{b x x}{2 a}+\frac{b x^{3}}{3 a^{2}}$
$-\frac{b x^{4}}{4^{3}}, \mathcal{V}^{2} c$. And the

Area $\mathrm{AF} d b=b x+\frac{b x^{2}}{2 a}+\frac{b x^{3}}{3 a^{2}}+-\frac{b x^{4}}{4 a^{3}} \mathcal{B}^{2} c$. And the fum $b d \mathrm{DB}=2 b x+\frac{2 b x^{3}}{3 a^{2}}+\frac{2 b x^{5}}{5 a^{4}}+\frac{2 b x 7}{7 a^{5}}, \xi^{2} c$. Now let us fuppofe $\mathrm{CA}=\mathrm{AF}=\mathrm{r}$, and Ab or $\mathrm{AB}=\frac{\mathrm{r}}{10}$, $\mathrm{C} b$ being $=0.9$, and $\mathrm{CB}=1.1$, then fubftitut-

132 Of the Method of Fluxions $i_{\text {ing }}$ thefe numbers for a, b, and x, the firft term of the feries becomes 0.2 , the fecond $0.0006666666666666, \Xi^{c}$. the third 0.000004 , and fo on; as you fee in this table.

> 0.2000000000000000
> 6666666666666 40000000000 285714286 2222222 18182 154
> 1
$0.2006706954621511=$ Area $b d \mathrm{DB}$.
If the parts of this Area $A d$ and $A D$ be added feparately, fubtract the leffer DA from the greater $d \mathrm{~A}$, and there will remain $\frac{b x^{2}}{a}+\frac{b x^{4}}{2 a^{3}}+\frac{b x^{5}}{3 a^{4}}$ $+\frac{b x^{8}}{4 a^{77}}, \varepsilon^{c} c$. where, if I be wrote for a and b, and $\frac{7}{10}$ for x, the terms being reduced to decimals will ftand thus.

$$
\begin{array}{r}
0.0100000000000000 \\
500000000000 \\
3333333333 \\
25000000 \\
200000 \\
1667 \\
\hline 14
\end{array}
$$

Now if this difference of the Areas be added to, and fubtracted from, their fum before found; half the aggregate 0.1053605156578263 will be the

and INFINITESERIES.

greater Area Ad ; and half the remainder 0.0953101798043248 will be the leffer Area

By the fame tables thefe Areas AD and Ad will be obtained alfo, when $A B$ and $A b$ are fuppofed $\frac{1}{500}$, or $\mathrm{CB}=1.01$, and $\mathrm{C} b=0.99$; if the numbers are but duly transferred to lower places. As

0. 0001000000000000 3333
$0.0001000050003333=A d-A D$

Half the aggregate $0.0100503358535014=\mathrm{Ad}$ and Half the refidue $0.0099503308531681=A D$. - And fo putting $A B$ and $A b=\frac{1}{100}$, or $C B=$ 1.001, and $\mathrm{C} b=0.999$, there will be obtained $\mathrm{Ad}=0.00100050003335835$ and $\mathrm{AD}=0.0009$ 9950013330835.

In the fame manner (if CA and $\mathrm{AF}=1$) putting AB and $\mathrm{Ab}=0.2$, or 0.02 , or 0.002 , thefe areas will arife.

$$
\begin{aligned}
\mathrm{Ad} d & =0.2231435513142097 \text { and } \mathrm{AD}=0.1823215576939546 \\
\text { or } \mathrm{Ad} & =0.0202027073175194 \text { and } \mathrm{AD}=0.0198026272961797 \\
\text { or } \mathrm{Ad}=0.002002 & \text { and } \mathrm{AD}=0.001
\end{aligned}
$$

From thefe Areas thus found it will be eafy to derive others by addition and fubtraction alone, for as it is $\frac{1.2}{0.8} \times \frac{1.2}{0.9}=2$; the fum of the areas 0.6931471805599453 belonging to the ratios $\frac{1.2}{0.8}$ and $\frac{1.2}{0.9}$ (that is infifting upon the parts of the abfcifs $1.2,0.8$. and $1.2,0.9$.) will be the area $\mathrm{AF} \delta \beta$, when $\mathrm{C} \beta=2$; as is known. Again, fince $\frac{1.2}{0.8} ; \times 2=3$, the fum 1.0986122886681097

134 Of the Metbod of FLuxions

 of the areas belonging to $\frac{1.2}{0.8}$ and 2 , will be the $\alpha-$ rea $\mathrm{AF} \delta \beta$; when $\mathrm{C} \beta=3$. Again, as it is $\frac{2 \times 2}{0.8}=5$; and $2 \times 5=10$; by a due addition of Areas will be obtained $1.6093379124341004=\mathrm{AF} \delta \beta$, when $C \beta=5: \quad$ and $2.0325850929940457=A F d \beta$, when $\mathrm{C} \beta=10$. Arid fince $10 \times 10=100$; and 10 $\times 100=1000$; and $\sqrt{5 \times 10 \times 0.98}=7$; and $10 \times$ $1.1=11$; and $\frac{1000 \times 1.001}{7 \times 11}=13$; and $\frac{1000 \times 0.998}{2}$ ' $=499$; it is plain that the area AF $\delta \beta$ may be found by the compofition of the areas found before, when $C \beta=100 ; 1000 ; 7$; or any other of the abovementioned numbers: $\mathrm{CA}=\mathrm{AF}$ being ftill unity.Thus I was willing to infinuate, that a method might be derived from bence, very proper for the conftruetion of a canon of Logaritbms, which determines the Hyperbolical Areas, (from wobich the Logaritbms may eaJily be derived,) corresponding to jo many prime numbers, as it were by Two operations only; which are not very troublefome. But whereas that Canon Seems to be derivable from this fountain more commodioufly than from any otber, what if I Bould point out its conAruction bere to compleat the whole?

Firft therefore, baving affumed o for the Logarithm of the number \mathbf{I}; and $\mathbf{1}$ for the Logarithm of the number 10, as is generally done; the Logaritbms of the Prime numbers 2, 3, 5, 7, 11, 13, 17, 37, are to be inveftigated by dividing the Hyperbolical Areas now found by $2.3025^{85} 50929940457$, which is the Area correfponding to the number, 10 ; or, which is the fame thing, by multiplying by its reciprocal 0.43429 44819032518 . Thus for inftance, if 0.69314718 , Ec. the Area correfponding to the number 2, were multiplied by $0.43429, \xi^{\circ}$ c. it makes 0.30102999 56639812 the Logaritbm of the number 2.

Then the Logarithms of all the numbers in the canon,

 wbich are made by the multiplication of this, are to be found by the addition of their Logarithms as is ufual; and tbe void places are to be filled up afterwards by the belp of this Theorem.Let N be a number to which a Logaritbm is to be adapted; x the difference between that and the Two neareft numbers equally diftant on each fide, whofe Logarithms are already found; and let d be balf the difference of their Logaritbms; then the required Logaritbm of the number N will be obtained by adding $d+\frac{d x}{2 \mathrm{~N}}+\frac{d x^{3}}{12 \mathrm{~N}^{3}}, \mathcal{E}^{c}$ c. to the Logaritbm of the leffer number. For if the numbers are expounded by $\mathrm{C} p, \mathrm{C} \beta$, and CP ; the reetangle CBD or $\mathrm{C} \beta \delta=1$ as before, and the ordinates PQ and pq being raifed; if N be written for $\mathrm{C} \beta$, and x for βp, or $\beta \stackrel{\mathrm{P}}{ }$, the area $p q \mathrm{QP}$ or $\frac{2 x}{\mathrm{~N}}+\frac{2 x^{3}}{3 \mathrm{~N}^{3}}+\frac{2 x^{5}}{5 \mathrm{~N}^{5}}, \Xi^{2} c$. will be to the Area $p q \delta \beta$ or $\frac{x}{\mathrm{~N}}+\frac{x^{2}}{2 \mathrm{~N}^{2}}+\frac{x^{3}}{3 \mathrm{~N}^{3}}$, $\mathcal{E}^{2} c$. as the difference between the LO- 0 garitbms of the extreme numbers or $2 d$, is to the difference between the Logaritbms of the leffer, and of the middle

$$
\frac{\frac{d x}{N}+\frac{d x^{2}}{2 N^{2}}+\frac{d x^{3}}{3 N^{3}}, E c c}{\frac{x}{N}+\frac{x^{3}}{3 N^{3}}+\frac{x^{5}}{5 \mathrm{~N}^{5}} \mathcal{E}^{3} c .} \text { that }
$$

is, when the divifion is performed $d+\frac{d x}{2 \mathrm{~N}}+\frac{d x^{3}}{12 \mathrm{~N}^{3}} \mathcal{E}^{\circ} c$.
The two firft terms of this feries $d+\frac{d x}{2 N}$, Itbink to be accurate enough for the conftruction of a canon of Logarithms, even though they were to be produced to. fourteen or fifteen figures; provided the number, whofe Logaritbm is to be found, be lejs than 1000 ; and this can give little trouble in the calculation, becaufe x is generally an unit, or the number 2. Yetit is not neceffary to interpolate all the places by the belp of this rule; for the Logaritbms of numbers, zebich are produced

136 Of the Method of F Euxions the multiplication or divifion of the number laft found, may be obtained by the numbers wobofe Logaritbms were bad before by the addition or fubtraction of ibeir Logarithms. Moreover by the differences of their Logaritbms, and by tbeir fecond and third differences, (if there be occafion,) the void places may more expeditioully be fupplied; the foregoing Rule being to be applied only, where the continuation of fome full places is wanted, in order to obtain thefe differences.

By the fame metbod Rules may be found for the intercalation of Logaritbms, when of tbree numbers, the Logarithms of the leffer and of the middle number are given, or of the middle number and of the greater; and this altbo' the numbers Joould not be in Aritbmetical progrefion.

Allo by purfuing the feps of this metbod, Rules might be eafily difcovered for the conftruction of the tables of Artifical Sines and Tangents, without the affitance of the Natural Tables.-But thefe - things only by the bye.

Hitherto we have treated only of the quadrature of Curves, which are expreffed by equations, confifting of complicate terms; and that by means of their reduction to equations, which confift of an infinite number of fimple terms. But whereas fuch Curves may fometimes be fquared by finite equations alfo; or however may be compared with other Curves, whofe areas in a manner may be confidered as known, of which kind are the Conick Sections. For this reafon I thought fit to adjoin the two following Catalogues or Tables of Theorems according to my promife, conftructed by the help of the Seventh and Eighth Propofi. tions aforegoing.

The firt of thefe exhibits the Areas of fuch Curves as can be fquared; and the Latter contains fuch Curves whofe areas may be compared with the

Areas of the Conick Sections. In each of thefe. the Latin Letters, d, e, f, g, and b, denote any given Quantities; x and z the Bafes or Abfciffes of Curves; v and y Parallel Ordinates ; and s and t Areas, as before. The Greek Letters η and θ annexed to the quantity z, denote the number of the dimenfions of the faid z, whether it be Integer, or Fraction, Affirmative, or Negative. As if
$n=3$, then $z^{n}=z^{3}, z^{2 n}=z^{6} z^{-n}=z^{-3}$ or $\frac{x}{z^{3}}, z^{n+1}$ $=z^{4}$, and $z^{n-1}=z^{2}$.
Moreover in the values of the Areas, for the fake of brevity, is written R inftead of thefe Radicals $\sqrt{ } e+f z^{n}$ or $\sqrt{e}+f z^{2 n}$, by which the value of the Ordinate y is affected.

See Table the Firft.

A Table of fome Curves related to Rectilinear Figures, conflructed by Problem VII.

	Order of Curves.	Values of the Areas.
I	$d z^{n+1}=y$	$\frac{d}{n} z^{n}=t$
I	$\frac{d z^{n-1}}{e e+2 e f z^{n}+\int f z^{2 n}}=y$	$\frac{d z^{n}}{n e^{2}+n e f z^{n}}=t$
$\text { III }\left\{\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \end{array}\right.$	$\begin{aligned} & d z^{n-1} \sqrt{e+f z^{n}}=y \\ & d z^{2 n-1} \sqrt{e+f z^{n}}=y \\ & d z z^{n-1} \sqrt{e+f z^{n}}=y \\ & d z^{4 n-1} \sqrt{e+f z^{n}}=y \end{aligned}$	$\begin{aligned} & \frac{2 d}{3 n f} R^{3}=t \\ & \frac{4 e+6 f z^{n}}{15 n f f} d R^{3}=t \\ & \frac{16 e e-24 e f z^{n}+30 f f z^{2 x}}{105 f^{3}} d R^{3}=t \\ & \frac{-96 e^{3}+144 e^{2} f z^{n}-180 e f^{2} z^{2 n}+210 f^{3} z^{3 v}}{945 \eta^{4}} d R^{3}=1 \end{aligned}$
IV $\left\{^{2}\right.$	$\begin{aligned} & \frac{d z^{n-1}}{\sqrt{e+f z^{n}}}=y \\ & \frac{d z^{2 n-1}}{\sqrt{e+f z^{n}}}=y \\ & \frac{d z^{n-1}}{\sqrt{e+f z^{n}}}=y \\ & \frac{d z^{x-1}}{\sqrt{e+f z^{n}}}=y \end{aligned}$	$\begin{aligned} & \frac{2 d}{n f} \mathrm{R}=t \\ & \frac{-4 e+2 f z^{n}}{3 n f f} d \mathrm{R}=t \\ & \frac{16 e^{2}-8 e f z^{n}+6 f f z^{2 x}}{15 n n^{3}} d \mathrm{R}=t \\ & \frac{-96 e^{3}+48 e^{2} f z^{n}-36 e^{2} z^{2 x}+30 f^{3} z^{3 n}}{105 v j^{4}} d \mathrm{R}=t \end{aligned}$

pag. 137.
To thefe may be added the following more general Theorems, by which a way is prepared to others of a higher Order. Let p be here put for $\sqrt{b+i z^{n}}$.

138 Of the Method of FLuxions

Other things of the fame kind might be added. But I fhall now pafs unto another fort of Curves which may be compared with the Conick Sections. And in this Table or Catalogue you have the propofed Curve reprefent.
 ed by the line QE R , the beginning of whofe Abfcifs is A, the Abfcifs AC, the Ordinate CE , the beginning of the Area αx, and the area defcribed $\alpha \chi \mathrm{EC}$. But the beginning of this Area or the Initial Term (which commonly either commences at the beginning of the $A b f c i f s A$, or recedes to an infinite diftance) is found by feeking the length of the Abfcifs $A \alpha$, where the value of the Area is nothing ; and by erecting the Perpendicular αx.

After the fame manner you have the Conick

Section reprefented by the line PDG, aGD or GDS

and Infinite Series.

whofe center is A ; vertex a; rectangular fernidiameters $A a$ and $A P$; the beginning of the $A b f c i f s$ A , or a, or α; the Abfcils AB , or aB , or $a \mathrm{~B}$; the Ordinate BD ; the Tangent DT, meeting AB in T; the Subtenfe AD; and the Rectangle infrribed and adfcribed ABDO.
Therefore retaining the Letters before defined, it will be $\mathrm{AC}=z, \mathrm{CE}=y$, ax $\mathrm{EC}=t, \mathrm{AB}$ or $a \mathrm{~B}$ or $\mathrm{BB}=x, \mathrm{BD}=v$, and ABDP or $a \mathrm{GDB}=s$. And befides when two Conick Sections are required for the determination of any Area, the Area of the latter thall be called σ, the $\mathrm{Abfcifs} \xi$, and the Ordinate r .

See Table the Second. Theorems that are delivered in this Catalogue of Curves, I think it may be proper to premife the following obfervations.

1. Whereas in the Equations reprefenting Curves, I have all along fuppofed all the figns of the quantities d, e, f, g, b, and i, to be affirmative ; whenfoever it fhall happen that they are negative, they muft be changed in the fubfequent values of the Abfifs and Ordinate of the Conick Section ; and alfo of the Area required.
\therefore 2. Alfo the figns of the numeral fymbols η and θ, when they are negative, muft be changed in the values of the Areas. Moreover their figns being changed, the Theorems themfelves may acquire a new form. Thus in the fourth form of the latter Table, the fign of n being changed, the Third Theorem becomes $\frac{d}{z^{-2 n+\sqrt{ }} \sqrt{e+f} z^{-n}}=y, \frac{1}{z^{-n}}=$ $x, \varepsilon v^{\circ} c$. that is, $\frac{d z^{3 n-1}}{\sqrt{e z^{2 n}+f z^{n}}}=y, z^{n}=x, \sqrt{f x+e x^{2}}=v$, $\frac{d}{n e}$ into $2 x v-3 s=t$. And the fame may be obferved in others.
2. But in the fecond Table, the feries of the Firft, Second, Third, Fourth, Ninth and Tenth Orders, are produced, in infinitum, by divifion alone. Thus having $\frac{d z^{4 n-1}}{e+f z^{n}}=y$; if you perform the divifion to a convenient period, there will arife $d e^{3}$
$\frac{d}{f} z^{3^{n-1}}-\frac{d e}{f f} z^{2 n-1}+\frac{d e^{2}}{f^{3}} z^{n-1}-\frac{\overline{f^{3}} z^{n-1}}{e+f z^{n}}=y$: The three firft terms belong to the fourth order of the firf Table; and the fourth belongs to the firft fpecies of this order. Whence it appears that the

3. Some of thefe orders may alfo orherwife be derived from others. As in the Laft Table, the Fifth, Sixth, Seventh, and Eleventh from the Eighth; and the Ninth from the Tenth. So that I might have omitted them, but that they may be of fome ufe, though not altogether neceffary. Yet I have omitted fome Orders, which I might have the Ninth and Tenth; becaufe they were affected by denominators that were complicate, and therefore can hardly be of any ufe.
4. If the defining equation of any Curve be compounded of feveral equations of different orders, or of different fpecies of the fame order ; the Area muft be compounded of the correfponding Areas. Take care however that they be rightly connected with their proper figns; for we muft not always add or fubtract at the fame time Ordinates to or from Ordinates, or correfponding Areas to or from correfponding Areas; but fometimes the fum of thefe, and the difference of thofe, is to be taken, for a new Ordinate ; or to conItitute a correfponding Area: And this muft be done, when the conftituent Areas are pofited on the contrary fide of the Ordinate. But that the cautious Geometrician may the more readily avoid thefe inconveniencies, I have prefixed their proper figns to the feveral values of the Areas, though fometimes negative. As is done in the Fifth and Seventh Orders of the Laft Table.
5. It is farther to be obferved about the figns of the Areas; that $+s$ denotes, either that the Area of the Conick Section adjoining to the Abfcifs is to be added to the other quantities in the value of $t ;$ [See the firft Example following;] or that the Area on the other fide of the Ordinate is to be fubtract. ed. And on the contrary -s denotes, ambiguounly, either that the Area adjacent to the Abfcifs

Area is $\frac{d}{3 n f} z^{n n}-\frac{d e}{2 n f f} z^{2 n}+\frac{d e^{2}}{\sqrt[n f 3]{2}} z^{n}-\frac{e^{3}}{e f^{3}} s$ putting s for the Area of the Conick Section, whofe Abfcifs $x=z^{n}$, and Ordinate $v=\frac{d}{e+f x}$.

The feries of the Fifth and Sixth Orders may be infinitely continued by the help of the two Theorems in the fifth order of the Firft Table, by a due addition or fubtraction; as alfo the feries of the Seventh and Eighth, by the help of the Theorems in the following fixth Order. And the feries of the eleventh, by the help of the Theorems in the Tenth Order of the fame Firft Table. For inftance, if the feries of the faid Fifth Order were to be continued; fuppofe $\theta=-4 \eta$, and the firft Theorem of the Fifth Order of the other Table will become $-8 n e z^{-4 n-1}-5 n f z^{-3 n-1}$ into $\frac{1}{2} \sqrt{e+f z^{n}}=y$; R^{3} $\frac{\mathrm{R}^{3}}{\mathrm{z}^{4 n}}=t$: but according to the fourth Theorem of this feries to be produced, writing - $\frac{5 n f}{2}$ for d, it is $-\frac{5 n}{2} f z^{-3 n-1} \sqrt{e+f z^{n}}=y, \quad \frac{1}{z^{n}}=x, \sqrt{f x+e x x}=v$, and $\frac{10 f v^{3}-15 f^{2} s}{12 c}=t$; fo that fubtracting the former values of y and t, there will remain $4 \times e z^{-4 n-1} \sqrt{e+f z^{n}}$ $=y$, and $\frac{10 f v^{3}-15 f^{2} s}{12 e}-\frac{\mathrm{R}^{3}}{z^{4 n}}=t$; thefe being multiplied by $\frac{d}{4 x e^{2}}$, and (if you pleafe) for $\frac{R^{3}}{z^{4 n}}$ writing $x v^{3}$, there will arife a Fifth Theorem of the feries to be produced, $\frac{d}{z^{4 n-1}} \sqrt{e+f z^{n}}=y, \frac{1}{z^{n}}=x, \sqrt{\sqrt{f x+c x x}}$ $=v$, and $\frac{10 d f v^{3}-15 d f^{2} s}{4^{8 n e^{2}}}-\frac{d x v^{3}}{4 x e}=t$.

	Forms of Curves,	$\xrightarrow[\text { Ablcifs. }]{\text { Conit }}$	$\underbrace{\text { Ordinate. }}_{\text {Sections. }}$	Areas of the Curves.
\int_{0}^{1}	$\frac{d z^{n-1} \sqrt{e+f z_{n}}}{g+b z^{\prime \prime}}=y$	$\sqrt{\frac{d}{g+b z^{n}}}=x$	$\sqrt{\frac{d f}{b}+\frac{e b-f g}{b} x^{2}}=v$	$\begin{aligned} & \begin{array}{l} 4 f g \\ -2 f g \\ -4 e b \\ +2 e b x v+2 d f \frac{v}{x} \end{array} \\ & n f b \end{aligned}=t .$
${ }^{1 \mathrm{X}} \mathrm{C}_{2}$	$\frac{d z^{2 n-1} \sqrt{e f} f z^{n}}{g+b z^{n}}=y$	$\sqrt{\frac{d}{g+b z^{n}}}=x$	$\sqrt{\frac{d f}{b}+\frac{e b-f g}{b} x^{2}}=v$	$\frac{4 \operatorname{legb}-2 e g b x g^{2}+2 f g g+\frac{2}{3} d b \frac{v^{3}}{x^{3}}-2 d f g \frac{v}{x}}{-4 f b^{2}}=t .$
	$\frac{d z^{n-1}}{g+b z^{n} \sqrt{c+f z^{n}}}=y$	$\sqrt{\frac{d}{g+b z^{n}}}=x$	$\sqrt{\frac{\sqrt{f f}}{b}+\frac{c b-f g}{b} x^{2}}=v$	$\frac{2 x v-4 s}{n f}=t=\frac{4}{v f} \text { ADGa. Fig. 3.4. }$
$\times 2$	$\frac{d z^{2 n-1}}{\delta+b z^{2} \sqrt{e+f z_{n}}}=y$	$\sqrt{\frac{d}{g-1-b z^{x}}}=x$	$\sqrt{\frac{d f}{b}+\frac{e b-f g}{b} x^{2}}=v$	$\frac{4 g s-2 g x v+2 d \frac{v}{x}}{n f b}=t .$
${ }^{1}$	$d z^{-1}, \frac{e f f z^{n}}{8+b z^{n}}=y$	$\left\{\begin{array}{l} \sqrt{g+b z^{\prime}}=x \\ \sqrt{b+g z^{\prime}}=x \end{array}\right.$	$\left\{\begin{array}{l} \sqrt{\frac{e b-f g}{b}+\frac{f}{b} x^{2}}=v \\ \sqrt{\frac{f g-e b}{g}+\frac{e}{g} \xi^{2}}=r \end{array}\right\}$	$\frac{2 d x v^{3} z^{-n}-4 d f s-4 d e \sigma}{n f g-n e b}=t .$
XI 22	$d z^{n-1} \sqrt{\frac{a+f z^{\prime \prime}}{g+b z^{\prime}}=y}$	$\sqrt{g+b z^{3}}=x$	$\sqrt{\sqrt{\frac{b-f g}{b}+\frac{f}{b} x^{2}}}=v$	$\frac{2 d}{n b} s=t .$
3	$\frac{d z^{2-1}+\frac{e+f x^{n}}{d+b z^{n}}}{x^{n}}=y$	$\sqrt{g+b z^{\prime \prime}}=x$	$\sqrt{\frac{e b-f g}{b}+\frac{f}{b} x^{2}}=v$	$\frac{d b x v^{3}-3 d f g_{s}}{2 n f b^{2}}=t$

and Infinite Series.

is to be fubtracted; or that the Area on the other fide of the Ordinate is to be added; as it may feem convenient. Alfo the value of t, if it comes out affirmative, denotes the Area of the Curve propofed adjoining to its Abfcifs; and contrariwife, if it be negative, it reprefents the Area on the other fide of the Ordinate.
7. But that this Area may more certainly be defined, we muft enquire after its limits. And as to its limit at the Bafe or Abfcifs, at the Ordinate, and at the Perimeter of the Curve, there can be no uncertainty. But its initial limit, or the beginning, from whence its defcription commences, may obtain various pofitions. In the following Examples, it is either at the beginning of the Ab fcifs; or at an infinite diftance; or in the concourfe of the Curve with its Abfcifs. But it may be placed elfewhere: And wherever it is, it may be found by feeking that length of the Abrcifs, at which the value of t becomes nothing, and there erecting an Ordinate; for the Ordinate fo raifed will be the limit required.
8. If any part of the Area be pofited below the Abrcifs, t will denote the difference of that, and of the part above the Abfcifs.
9. Whenfoever the dimenfions of the terms in the values of x, v, and t, fhall afcend too high, or defcend too low; they may be reduced to a juft degree by dividing or multiplying by any given quantity (which may be fuppofed to perform the office of unity,) fo often, as the dimenfions fhall be either too high or too low.
10. Befides the foregoing Catalogues or Tables, we might alfo conftruct Tables of Curves related to other Curves, which may be the moft fimple in their kind. As $\sqrt{e+f x^{3}}=v$; or $x \sqrt{e-f x^{3}}=v$; or $\sqrt{e+f x^{4}}=v, \mathcal{J} c$. fo that we might at all times derive the Area of any propofed Curve from the fimpleft

144 Of the Method of $\mathrm{F}_{\mathrm{L}} \mathrm{U} \times 1 \mathrm{I}_{\mathrm{N}} \mathrm{s}$ fimpleft original; and know to what Curves it ftands related. But now let us illuftrate by exam. ples what has been already delivered.

Example.i. Let QER be a Conchoidal of fuch a kind that the femicircle QHA being de-

fcribed, and AC, being erected perpendicular to the diameter AQ, if the parallelogram QACI be completed, the diagonal AI be drawn meeting the femicircle in H , and from H the perpendicular HE be let fall to IC; then the point E will defcribe a Curve, whofe area ACEQ is fought.

Therefore make $\mathrm{AQ}=a, \mathrm{AC}=z, \mathrm{CE}=y$; and becaufe of the continual proportionals AI, AQ, AH, EC; it will be EC or $y=\frac{a^{3}}{a^{2}+2^{2}}$.
Now that this may acquire the form of the equations in the Tables, make $n=2$, and for z^{2} in the denominator write z^{4}; and $a^{3} z^{\frac{1}{2} w-1}$ for a^{3} or $a^{3} z^{1-1}$ in the numerator; and there will arife $y=$ $\frac{a^{3} z^{\frac{1}{2} n-1}}{a^{2}+z^{n}}$; an equation of the firft fpecies of the fecond order of the Jaft Table: and the terms being compared, it will be $d=a^{3}, e=a^{2}$, and $f=\mathrm{r}$. So that $\sqrt{\frac{a^{3}}{a^{2}+x^{2}}}=x, \sqrt{a^{3}-a^{2} x^{2}}=v$, and $x v-2 s$ $=1$.

Now that the values found of x and v may be reduced to a juft number of dimenfions, chufe any given quantity as a, by which, as unity, a^{3} may be mulciplied once in the value of x; and in the value of v, a^{3} may be divided once, and $a^{2} x^{2}$ twice ; and by this means you will obtain $\sqrt{a^{2}+z^{2}}=x$; $\sqrt{a^{2}-x^{2}}=v$; and $x v-2 s=t$. Of which the conftruction is thus. -Center A and radius AQ defribe the circular Quadrant QDP; in AC take $\mathrm{AB}=\mathrm{AH}$; raife the Perpendicular BD meeting the Quadrant QDP in D, and draw AD. Then twice the Sector ADP will be equal to the Area fought ACEQ. For $\sqrt{a^{2}+z^{2}}=\left(\sqrt{A D^{2}-A B^{2}}=\right) \mathrm{BD}$ or v; and $x v-2 s=2 \triangle \mathrm{ADB}-2 \mathrm{ABDQ}$, or $=2 \Delta$ $\mathrm{ADB}+2 \mathrm{BDP}$; that is, either $=-2 \mathrm{QAD}$, or $={ }_{2}$ DAP. Of which values the affirmative 2 DAP belongs to the Area ACEQ on this fide EC; and the negative - QAD belongs to the Area RECR extended ad infinitum beyond EC.
The folution of Problems thus found may fometimes be made more elegant. Thus in the prefent care, drawing RH the femidiameter of the Circle QHA, becaufe of the Equal arches QH and DP, the Sector QRH is half the Sector DAP; and therefore a fourth part of the furface ACEQ.
Ex. 2. Let AGE be a Curve which is defcribed by the angular puint E of the Norma AEF , whilft one of the legs AE , being indetermin:te, paffes continually through the given point A; and the other CE of a given length flides upon the right line AF given in pofition. Let fail EH perpendicular to $A F$, and complete the parallelogram AHEC ; then calling $\mathrm{AC}=z, \mathrm{CE}=y$, and EF $=a$, becaufe of HF, HE, HA, continual proportionals, it will be HA or $y=\frac{z^{2}}{\sqrt{a^{2}-x^{2}}}$.

36 Of the Method of FLUXIONs

Now that the Area AGEC may be known, fuppofe $z^{2}=z^{n}$, or $2=n$, and thence it will be $\frac{\sqrt{a^{2}+\infty}}{=1}=y$. Here fince z in the numerator is of a

fracted dimenfion, deprefs the value of y by dividing by $z^{\frac{1}{2} \eta}$, and it will be $\frac{z^{n-1}}{\sqrt{a^{2} z^{-n}-1}}=y$; an Equation of the fecond fpecies of the feventh Order of the latter Table; and the terms being compared it is $d=1, e=-1$, and $f=a^{2}$. So that $z^{2}=\left(\frac{1}{z^{-n}}=\right) x^{2}$, $\sqrt{a^{2}-x^{2}}=v$, and $s-x v=t$. Therefore fince x and z are equal, and fince $\sqrt{a^{2}-x^{2}}=v$ is an equation to a circle, whofe diameter is a; Center A, diftance a, or EF, let the Circle PDQ be defcribed, which CE meets in D ; and let the parallelogram ACDI be completed. Then will $\mathrm{AC}=z, \mathrm{CD}$ $=v$, and the Area fought AGEC $=s-x v=A C D P$ $-\mathrm{ACDI}=\mathrm{IDP}$.

Ex. 3. Let AGE be the Ciffoid belonging to the Circle ADQ, defcribed with the diameter AQ. Let DCE be drawn perpendicular to the diameter, and meeting the Curves in D and E . Then naming $\mathrm{AC}=z, \mathrm{CE}=y$, and $\mathrm{AQ}=a$; becaufe of CD , CA, CE continual proportionals, it will be CE or $y=\frac{z z}{\sqrt{a z-z z^{2}}}$; and dividing by z, it is $y=\frac{z}{\sqrt{a z^{-1}-1}}$.

Therefore $z^{-1}=z^{y}$, or $-1=\eta$, and thence $y=$ $\frac{z^{2+2-1}}{\sqrt{a z z-1}}$, an Equation of the third fpecies of the

fourth Order of the fecond Table. The terms being compared it is $d=1, e=-1$, and $f=a$. Therefore $z=\frac{1}{z^{n}}=x, \sqrt{\overline{a x-x x}}=v$, and $3 s-2 x v$ $=t$. Whence it is $\mathrm{AC}=x, \mathrm{CD}=v$; and thence $\mathrm{ACDH}=s$: So that $3 \mathrm{ACDH}-4 \triangle \mathrm{ADC}=3 \mathrm{~s}$ $-2 x v=t=$ Area of the Ciffoid ACEGA; or, which is the fame thing, 3 Segment ADHA = Area ADEGA, or 4 Segment $\mathrm{ADHA}=$ Area AHDEGA.

Ex. 4. Let PE be the firft Conchoid of the Ancients defcribed from Center G with the afymptote AL, and diftance LE; draw its axis GAP, and let fall the ordinate EC . Then call $\mathrm{AC}=z, \mathrm{CE}$ $=y, G A=b$, and $A P=c$, because of the proportionals AC:CE-AL ::G C:CE, it will be CE or
$y=\frac{b+z}{z} \sqrt{c^{2}-z^{2}}$. the parts of the Ordinate CE are to be confidered

feparately. And if the Ordinate CE be fo divided in D , that it is $\mathrm{CD}=\sqrt{e^{2}-z^{2}}$, and $\mathrm{DE}=\frac{b}{z} \sqrt{e^{2}-z^{2}}$, then CD will be the Ordinate of a Circle defcribed from center A, and with radius AP. Therefore the part of the Area PDC is known, and there will remain the other part DPED to be found. But fince DE, that part of the Ordinate by which it is defrribed is equivalent to $\frac{b}{z} \sqrt{e^{2}-z^{2}}$; fuppofe $2=n$, and it becomes $\frac{b}{z} \sqrt{e^{2}-z^{n}}=D E$, an Equation of the firft fpecies of the third Order of the fecond Table. The terms therefore being compared, it is, $d=b, e=c^{2}$, and $f=-1$; and therefore $\frac{1}{z}$ $=\frac{1}{\sqrt{z^{n}}}=x, \sqrt{-1+c^{2} x^{2}}=v$, and $2 b c^{2} s-\frac{b v^{3}}{x}=t$.

Thefe things being found; reduce them to a juft number of dimenfions, by multiplying the terms that are too depreffed, and dividing thofe that are

and INFINITE SERIES.

too high, by fome given quantity. If this be done by c, there will arife $\frac{c^{2}}{\approx}=x, \sqrt{-c^{2}+x^{2}}=v$, and $\frac{2 b s}{c}-\frac{b v 3}{c x}=t$: The conffruction of which is in this manner.
With center A, principal Vertex P, and parameter 2AP, defcribe the Hyperbola PK ; and from the point C draw the right line CK that fhall touch the Parabola in K: then it will be as AP to ${ }_{2}$ AG, fo is the Area CKPC to the Area required DPED.

Ex. 5. Let the Norma GFE revolve about the Pole G , fo that its angular point F may continu-

ally flide upon the right line AF given in pofition ; then conceive the Curve PE to be defcribed by any point E in the other leg EF. Now that the Area of this Curve may be found, let fall GA and EH perpendicular to the right line AF, and completing the parallelogram AHEC , call $\mathrm{AC}=z, \mathrm{CE}=y, \mathrm{AG}$ $=b$, and $\mathrm{EF}=c$; then becaufe of the proportionals HF
$\mathrm{HF}: \mathrm{EH}:: \mathrm{AG}: \mathrm{AF}$, we fhat have $\mathrm{AF}=$ $\frac{b z}{\sqrt{c-z z}}$ Therefore CE or $y=\frac{b z}{\sqrt{c^{2}-z^{2}}}-\sqrt{c^{2}-z^{2}}$; but whereas $\sqrt{\mathrm{c}^{2}-x^{2}}$ is the ordinate of a Circle, defcribed with the femidiameter c, about the center A ; let fuch a Circle PDQ be defrribed, which CE produced meets in D ; then it will be $\mathrm{DE}=$ $\frac{b z}{\sqrt{c c-z z}}$; by the help of which Equation, there remains the Area PDEP or DERQ to be determined. Suppore $n=2$ and $\theta=b$, and it will be $\mathrm{DE}=$ $b_{z^{n-1}}$ $\frac{b z^{n-1}}{\sqrt{c c-z^{n}}}$; an Equation of the firft fpecies of the fourth Order of the firlt Table: and the terms being compared it will be, $b=d, c=e$, and $-i=f$. So that $-b \sqrt{\sqrt{c-z z}}=-6 \mathrm{R}=t$.

Now as the value of t is negative, and therefore the Area reprefented by it lies beyond the line. DE ; that its initial limit may be found, feek for that length of z at which t becomes nothing, and you will find it to be c. Therefore continue AC to Q , that it may be $\mathrm{AQ}=c$, and erect the Ordinate QR ; then DQRED will be the Area whofe value now found is $-b \sqrt{c c-z z}$.

If you fhould defire to know the quantity of the Area PDE, pofited at the Abfcifs AC, and coextended with it, without knowing the limit QR ; you may thus determine it.

From the value which t obtains at the length of the Abfcifs $A C$, fubtract its value at the beginning of the Abrcifs; that is, from $-b \sqrt{c c-z z}$ fubtract - $b c$, and there will arife the defired quantity $b c-b \sqrt{c c}-z z$, Therefore complete the parallelogram PAGK, and let fall DM perpendicular to AP , which meets GK in M , and the parallelogram PKML will be equal to the Area PDE.

Whenever the Equation defining the nature of the Curve cannot be found in the Tables, nor can be reduced to fimpler terms by divition, nor by any other means; it mult be cransformsed into other Equations of Curves related to it after the manner fhewn in Prob. VIII. till at laft one is produced whofe area may be known by the Tables. And if after all endeavours are ufed, no fuch can be found; it may be certainly concluded, that the Curve propofed cannot be compared either with Rectilinear Figures, or with the Conick Sections.

In the fame manner, when Mechanical Curves are concerned, they mult be transformed into equal Geometrical Figures, as is fhewn in the fame Prob. VIII. And then the Areas of Geometrical Curves are to be found from the Tables. Of this matter take the following Example.

Ex. 6. Let it be propofed to determine the Area of the Figure of the Arches of any Conick Section, when they are made Ordinates on their right fines. As let A be the center of the Conick Section; $A Q, A R$, the Semi-axes; $C D$ the Ordinate to the Axis AR ; and PD a perpendicular at the point D. Alfo let $A E$ be the faid mechanical Curve meeting CD in E. From its nature before defined CE will be equal to the arch QD; therefore the Area AECC is fought, or completing the parallelogram ACEF, the Excefs AEF is required. To which purpofe let a be the Latus Rectum of the Conick Section, and b its Latus Tranfverfum or 2 AC Alfo let AC $=z$ and $C D=y$: then it will be $\sqrt{\frac{1}{4} b b+\frac{b}{a} z z}=y_{9}$ an equation to a Conick Section as is known. Alfo $P C=\frac{b}{a} z$; and thence $P D=\sqrt{\frac{1}{4} b b+\frac{b b-a b}{a a} a z a}$

152 Of the Method of Fluxions

Now fince the Fluxion of the Arch $Q D$ is to the Fluxion of the Abrcifs AC, as PD to CD; if the Fluxion of the Abfcifs be fuppofed I, the Fluxion of the Arch QD, or of the Ordinate CE, will be

$\sqrt{\frac{\frac{1}{4} b b+\frac{b b+a b}{a a} z z}{\frac{x}{4} b b+\frac{b}{a} z z}}$; draw this into FE or z, and there will arife $z \sqrt{\frac{\frac{1}{4} b b+\frac{b b-a b}{a a}}{\frac{1}{4} b z+\frac{b}{a}} z z}$ for the Fluxion of the Area AEF. If therefore in the Ordinate CD you take $\mathrm{CG}=z \sqrt{\frac{\frac{1}{4} b b-1-\frac{b b+a b}{a a} z z}{\frac{4}{4} b b+\frac{b}{a} z z}}$, then the
Area AGC, which is defrribed by CG moving upon AC , will be equal to the Area AEF ; and the

and Infinite Series.

Curve AG will be a Geometrical Curve ; therefore the Area AGC is fought. To this purpofe, let z^{n} be fubftitured for z^{2} in the laft equation and it becomes $z^{n-1} \sqrt{\frac{1+b b+\frac{b b-\frac{a b}{c a}}{x b b+\frac{b}{a n}} z^{n}}{n}}=C G$; an Equa-

$$
\frac{1}{4} b b+\frac{b}{a} z^{n}
$$

tion of the fecond species of the eleventh Order of the fecond Table. And from a comparifon of terms it is $d=1, e=\frac{1}{4} b b=g, f=\frac{b b+a b}{a a}, b=\frac{b}{a}$: So that $\overline{\sqrt{\frac{1}{4}} b b+\frac{b}{a} z z}=x, \sqrt{-\frac{b 3}{4 a}+\frac{a+b}{a} x x}=v$, and $\frac{b}{a} s=t$: that is, $\mathrm{CD}=x, \mathrm{DP}=v$, and $\frac{a}{v} s=t$. And this is the Conftruction of what is now found.

At Q erect $Q K$ perpendicular and equal to $Q A$, and thro' the point D draw HI parallet to it but equal to DP ; then the line KI, at which HI is terminated, will be a Conick Section; and the comprehended Area HIKQ will be to the Area fought AEF , as b to a, or as PC to AC.
Here obferve, that if you change the fign of b, the Conick Section, to whofe Arch the right line CE is equal, will become an Ellipfis; and befides, if you make $b=-a$, the Ellipfis becomes a Circle. And in this cafe the Line KA becomes a Right Line parallel to AQ.

After the Area of any Curve has been thus found and conftructed, we fhould confider about the demonftration of the conftruction, that laying afice all Algebraicai Calculations as much as may be, the Theorem may be adorned; and made elegant, fo as to become fit for publick view. Now there is a general method of demonftrating, which I thall endeavour to illuftrate by the followitg ext amples.

154 Of the Metbod of Fluxions

Demonflration of the Confruction in Example 5.

In the Arch PQ take a point d indefinitely near to D , and draw de and $d m$ parallel to DE

and DM , meeting DM and AP in p and l; then DEed will be the momentum of the Area PDEP, and LMml the momentum of the Area LMKP. Draw the femidiameter AD; and conceive the indefinitely fmall arch $\mathrm{D} d$ to be as it were a right line, and the Triangles Dpd, ALD, will be like, and therefore $\mathrm{D}_{p}: p d::$ AL: LD. But it is HF $: \mathrm{EH}:: \mathrm{AG}: \mathrm{AF}$; that is, $\mathrm{AL}: \mathrm{LD}:: \mathrm{ML}$: DE . And therefore $\mathrm{D} p: p d:: \mathrm{ML}: \mathrm{DE}$. Wherefore $\mathrm{D}_{p} \times \mathrm{DE}=p d \times \mathrm{ML}$; that is, the momentum DEed is equal to the momentum $\mathrm{LM} m$ l. And fince this is demonftrated indeterminately of any contemporaneous moments whatever, it is plain that all the moments of the Area PDEP are equal to all the contemporaneous moments of the Area PLMK, and therefore the whole Areas compofed of thefe moments are equal to each other. $\mathrm{Q} . \mathrm{E}: \mathrm{D}$.

Demonjfration of the Conffrusion in Example 3.

L.er DEed [Fig. p. 147.] be the moment of the fuperficies AHDE, and AdDA the contemporary moment of the fegment ADH. Draw the femidiameter DK , and let de meet AK in c. Then it is $\mathrm{C}_{c}: \mathrm{D} d:: \mathrm{CD}: \mathrm{DK}$. Befides it is $\mathrm{DC}: \mathrm{QA}$ (2DK) :: $\mathrm{AC}: \mathrm{DE}$; and therefore $\mathrm{C} c: 2 \mathrm{D} d:$: $\mathrm{DC}: 2 \mathrm{DK}:: \mathrm{AC}: \mathrm{DE}$, and $\mathrm{C} c \times \mathrm{DE}=2 \mathrm{D} d x$ AC. Now to the moment of the periphery Dd produced, that is, to the Tangent of the Circle, jet fall the perpendicular AI, and AI will be equal to AC ; fo that $2 \mathrm{D} d \times \mathrm{AC}=2 \mathrm{D} d \times \mathrm{AI}=4 \triangle s \mathrm{AD} d$, fo that $4 \Delta_{s} \mathrm{AD}_{d} d=\mathrm{C} c \times \mathrm{DE}=$ the moment $\mathrm{DE} e d$. Therefore every moment of the face AHDE is quadruple of the contemporary moment of the fegment ADH, and confequently that whole Space is quadruple of the whole Segment Q.E.D.

Demonftration of the Conftruction in Example 4.

Draw ce parallel to CE and at an indefinitely fmall diftance from it, and the Tangent of the

Hyperbola ck; and let fall KM perpendicular ta

156 Of the Mettod of Fiuxions

AP. Now from the nature of the Hyperbola, it will be AC : AP :: AP:AM. And therefore ${\overline{A G^{2}}}^{2}: \overline{G L}^{2}:: \overline{A^{2}}: \overline{\mathrm{LE}}^{2}$ (or $\overline{A P}^{2}$) : $:{\overline{A P^{2}}}^{2}: \overline{A M}^{2}$; and divijim $\overrightarrow{\mathrm{AG}}^{2}: \overline{\mathrm{AL}^{2}} \cdot\left(\overrightarrow{\mathrm{DE}^{2}}\right):: \overline{\mathrm{AP}}^{2}: \overline{\mathrm{AM}}^{2}-\overline{\mathrm{AP}}^{2}\left(\overline{\mathrm{MK}}^{2}\right)$; and inverfe AG: AP :: DE:MK. But the litthe Area DEed is to the Triangle CK c, as the altitude DE is to $\frac{1}{2}$ the alcitude KM ; that is; as $\mathrm{AG}: \frac{1}{2} \mathrm{AP}$; wherefore all the monients of the fpace PDE are to all the comporaty moments of the fpace PKC, as $A G=\frac{1}{2} A P$, and confequently thofe whole Spaces are the in the fame ratio, Q.E.D.

Demonfration of tbe Conftrution in Example 6.

Draw $c d$ parallel and infinitely near to CD meeting the Curve AE in c, and draw $b i$ and f_{c} meet-

ing DC in p and q; then by the Hypothefis $\mathrm{D} d$ $=\mathrm{E} q$, and from the fimilitude of the Triangles $\mathrm{D} d p$ and DCP , it will will be $\mathrm{D}_{p}:(\mathrm{D} d) \mathrm{E} q:: \mathrm{CP}$
: (PD) HI ; fo that $\mathrm{D} p \times \mathrm{HI}-\mathrm{E} q \times \mathrm{CP}$; thence $\mathrm{D}_{\rho} \times \mathrm{HI}$ (the moment Hlib): Eq $\times \mathrm{AC}$ (the momene $\mathrm{EF}_{f()}: \mathrm{E} q \times \mathrm{CP}: \mathrm{Eq} \times \mathrm{AC}:: \mathrm{CP}$: $A C$. Wherefore fince PC and AC are in the given ratio of the Latus Tranfoerfium to the Latus Reflum of the Conick Section QD; and fince Hib and $\mathrm{EF} f e$ the moments of the Areas HIKQ and $A E F$ are in that ratio ; the Areas themfelves will be in fame ratio Q.E.D.

In this kind of demonftrations, it is to be obferved, that I affume fuch Quantities for equal, whofe ratio is that of equality: and chat is to be efteemed a ratio of equality, which differs lefs from equality than by any unequal ratio that can be affigned. Thus in the laft demonftration I fuppofed the rectangle $\mathrm{Eq} \times \mathrm{AC}$ or $\mathrm{FEq} f$, to be equal to the fpace $\mathrm{FE} e f$ (becaufe by reaton of the difference Eqe infinitely lefs than them, or nothing in comparifon of them, they have not a ratio of inequality. For the fame reafon I made $\mathrm{DP} \times \mathrm{HI}=$ Hiib. And fo in others.

I have here made ufe of this method of proving Areas of Curves to be equal, or to have a given ratio, by the equality, or by the given ratio of their moments, becaufe it has an affinity to the ufual methods in thefe matters. But that feems more natural, which depends upon the generation of Superficies by Motion or Fluxion: Thus if the Conftruction in the fecond Example was to be demonftrated: From the nature of the Circle, the Fluxion of the right line ID [Fig. p. 146.] is to the Eluxion of the right line IP, as AI to ID; and it is. AI : ID : : ID : CE from the nature of the Curve

AGE; and therefore $\mathrm{CE} \times \dot{\mathrm{D}}=\mathrm{IDDG} \times \dot{\mathrm{P}}$. But
CE \times ID is equal to the Fluxion of the Area PDI; and therefore thofe A reas being generated by equal Fluxions muft be Equal. Q.E.D.

- 5^{8} Of the Metbod of F \ddagger uxians

For the fake of farther illuftration, I hall add the demonftration of the Conftruction by which the A. rea of the Ciffoid is determined in the Third Example. Let the lines marked with points in the Scheme be expunged, draw the Chord DQ, and the A-

fymptote QR , of the Ciffoid. Then from the nature of the Circle, it is $\mathrm{DQ}=\mathrm{AQ} \times \mathrm{CQ}$, and thence (by Prob. 1.) 2 DQ multiplied by the Fluxion of $D Q=A Q=A Q \times \dot{C Q}$ therefore $A Q: D Q::$ ${ }_{2} \dot{\overline{\mathrm{DQ}}}: \dot{\overline{\mathrm{CQ}}}$. Alfo from the nature of the Ciffoid it is $\mathrm{ED}: \mathrm{AD}:: \mathrm{AQ}: \mathrm{DQ}$; therefore ED : or $4 \times \frac{1}{2} \mathrm{AD} \times \overline{\mathrm{D}}$: Now fince DQ is perpendicular at the end of $A D$ revolving about A; and ${ }_{2}^{2} \mathrm{AD} \times 2 \mathrm{DQ}$ is equal to the Fluxion generating
the Area ADOQ ; its quadruple alfo $\mathrm{ED} \times \overline{\mathrm{CO}}$ is equal to the Fluxion generating the Ciffoidal Area QREDO. Wherefore that Area QREDO infinitely long, is generated quadruple of the other ADOQ. Q.E.D.

Scholium.

By the foreging Tables not only the Areas of Curves, but:alfo Quantities of any orher kind that are generated by an analogous way of Flowing may be derived from their Fluxions, and that by the affiftance of this Theorem:

That a quantity of any kind is to an Unit of the fame kind, as the Area of a Curve is to a fuperficial Unity; if fo be that the Fluxion generating that quantity be to an Unit of its kind, as the Fluxion generating the Area is to an U. nit of its kind allo; that is, as the Rigbt Line moving perpendicularly upon the $A b j c i f s$ (or the Ordinate) by wobich the Area is defcribed, to a linear Unit.

Wherefore if any Fluxion whatever is expounded by fuch a moving Ordinate, the quantity generated by that Fluxion will be expounded by the Area defcribed by fuch Ordinate. Or if the Fluxion be expounded by the fame algebraick terms as the Ordinate, the generating quantity will be expounded by the fame as the defribed Area. Therefore the Equation, which exhibits a Fluxion of any kind, is to be fought for in the firt column of the Tables, and the value of t in the lalt column will fhew the generated Quantity.

160 Of the Metbod of Fluxions

As if $\sqrt{1+\frac{9 z}{t a}}$ exhibics a Fluxion of any kind, make it equal to y; and that it may be reduced to to the form of the equations in the Tables, fub. ftitute z^{a} for z, and it will be $z^{n-1} \sqrt{1+\frac{9}{4} a^{n}}=y$, an equation of the firft fpecies of the Third Order of the firft Table. And comparing the terms it will be $d=1, e=1, f=\frac{9}{4 a}$; and thence $\frac{8 a+18 z}{27}$ $\sqrt{1+\frac{9^{a}}{4^{a}}}=\frac{2 d}{36 f} R^{3}=t$. Therefore it is the quantity $\frac{8 a+18 z}{\frac{27}{1+\frac{9^{z}}{4 a}}}$ which is generated by the Fluxion $\sqrt{1+\frac{9 z}{4} a^{2}}$.

And thus if $\sqrt{1+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}}$ reprefents a Fluxion, by a due reduction (or by extracting $z^{\frac{2}{3}}$ out of the Radical, and writing z^{n} for $z^{-\frac{2}{3}}$, there will be had $\frac{1}{z^{n+1}} \sqrt{ } z^{n}+\frac{16}{9 a^{\frac{2}{3}}}=y$; an equation of the fecond fpe. cies of the Fith Order of the fecond Table. Then comparing the terms it is $d=\mathrm{r}, e=\frac{16}{9 a^{\frac{2}{3}}}$, and $f=1$. So that $z^{\frac{2}{3}}=\frac{1}{z^{n}}=x x, \sqrt{1+\frac{16 x x}{9 a^{\frac{2}{3}}}}=v$, and $\frac{3}{2} s=$ $\frac{-2 d}{n} s=t$; which being found, the quantity generated by the Fluxion $\sqrt{1}+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}$ will be known, by making it to be to an unit of its own kind, hs the Area $\frac{3}{2}$ s is to fuperficial unity; or which comes.
to the fame, by fuppofing the quantity t no longer to reprefent a fuperficies, but a quantity of another kind, which is to an unit of its own kind, as that fuperficies is to fuperficial unity.
Thus, fuppofing $\sqrt{1}+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}$ to reprefent a Li near Fluxion. I imagine t no longer to fignify a Superficies, but a Line; that Line, for inftance, which is to a Linear Unit, as the Area which (according to the Tables) is reprefented by t, is to a Superficial Unit, or that which is produced by applying that Area to a Linear Unit: on which account if that Linear Unit be made e, the Length generated by the foregoing Fluxion will be $\frac{3 s}{2 e}$. Upon this Foundation thefe Tables may be applied to the determining of Lengthe of Curves; the Contents of their Solids; andany other Quantities whatever, as well as the Areas of Curves.

Of 2ueftions that are related bereto.

1. To approximate to the Areas of Curves mechanically.

The Method is this. That the Values of two or more Right lined Figures may be fo compounded together, that they may very nearly conftitute the value of the Curvilinear Area required.

Thus for the Circle AFD which is denoted by the Equation $x-x x=\dot{z} \dot{z}$. Having found the value of the Area AFDB, viz. $\frac{2}{2} z^{\frac{3}{2}}-\frac{x}{5} x^{\frac{5}{2}}-\frac{8}{2} x^{\frac{7}{2}}-\frac{x}{72} x^{\frac{9}{2}}, \mathcal{E}_{2}$. the values of fome rectangles are to be fought, fuch as the value $x \sqrt{x-x x}$ or $x^{\frac{3}{2}}-\frac{1}{2} x^{\frac{5}{2}}-\frac{7}{8} x^{\frac{7}{2}}$ $\frac{1}{16} x^{\frac{9}{2}}, 6 ;$ of the rectangle $\mathrm{BD} \times \mathrm{AB}$; and $x \sqrt{x}$ or be multiplied by any differment letters, that fad
 for numbers indefinitely, and then to be added logethen ; and the terms of the fum are to be compared with the corresponding terms of the value of the Area AFDB, that they may be made as nearly equal as poffible. As if there Parallelograms were multiplied by e and f, the fum would be $e x^{\frac{3}{2}}$ $+f$ $-\frac{1}{2} e x^{\frac{5}{2}}-\frac{1}{5} e x^{\frac{7}{2}}, \quad \mathcal{J}^{2} c$. the terms of which being compared with there terms $\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{28} x^{\frac{7}{2}}, \mathcal{E V}^{2}$. there aries $e+f=\frac{2}{3} ;-\frac{1}{2} e=-\frac{1}{5}$, or $e=\frac{2}{5}$; and $f=\frac{2}{3}-e=\frac{4}{15}$. So that $\frac{2}{5} B D \times A B+\frac{4}{15} A D \times A B=$ Area $A F D B$ very nearly: for $\frac{2}{5} B D \times A B+\frac{4}{15} A D$ $\times \mathrm{AB}$ is equivalent to $\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{5} x^{\frac{5}{2}}-\frac{1}{20} x^{\frac{7}{2}}-\frac{1}{40} x^{\frac{9}{2}}, छ^{9} c$. which being fubtracted from the Area AFDB becomes the Error only $\frac{1}{7} x^{\frac{7}{2}}+\frac{x}{90} x^{\frac{9}{2}}, \xi^{2} c$.

Thus if $A B$ were bifected in E, the value of the Rectangle $\mathrm{AB} \times \mathrm{DE}$ will be $x \sqrt{-\frac{3}{4} x x}$, or $x^{\frac{3}{2}}$ $\frac{3}{8} x^{\frac{5}{2}}-\frac{9}{28} x^{\frac{7}{2}}-\frac{27}{1024} x^{\frac{9}{2}}$, Etc. and this compared with the Rectangle $\mathrm{AD} \times \mathrm{AB}$ gives $\frac{8 \mathrm{DE}+2 \mathrm{AD}}{15}$ into $A B=$ Area AFDB ; the error being only $\frac{1}{56} 0^{\frac{3}{2}}$ $+\frac{1}{5760} x^{\frac{5}{2}}, \Xi^{2} c$. which is always left than $\frac{15}{1500}$ parc of the whole Area; even though AFDB were a Quadrant of a Circle. But this Theorem may be thus propounded: As 3 to 2 fo is the Rectangle $\mathrm{AB} \times \mathrm{DE}$ added to $\frac{r^{\text {th }}}{5}$ part of the difference between AD and $D E$, to the Area AFDB very nearly.

And thus by compounding two Rectangles AB $\times E D$ and $A B \times B D$, or all the Rectangles, together, or by taking ftill more Rectangles, other Rules may be invented, which will be fo much more exach, as there are more rectangles made ufe of. And the fame may be underftood of the Area of the Hyperbola, or of any other Curves : nay, by only one Rectangle the Area may be very commodioufly exhibited; as in the foregoing Circle by taking BE to AB as $\sqrt{ }$ Io to 5 , the Rectangle $\mathrm{AB} \times \mathrm{ED}$ will be to the Area AFDB as 3 to 2, the error being only $\frac{x}{125} x^{\frac{7}{2}}+\frac{x}{2} \frac{x}{5} x^{\frac{9}{2}}$, E c.
II. The Area being given, to determine the Abcifs and Ordinate.

When the Area is expreffed by a Finite Equation there can be no difficulty; but when it is expreffed by an infinite feries, the affected root is to be extracted which denotes the Abfcifs. So for the Hyperbola defined by this Equation $\frac{a b}{a+x}=\dot{z}$; after you have found $z=b x-\frac{b x^{2}}{2 a}+\frac{b x^{3}}{3 a^{2}}-\frac{b x^{4}}{4 a^{3}}$ $E_{0} c$, that from the given Area the Abrcifs x may be known, extract the affected root, and there will arife $x=\frac{z}{b}+\frac{z^{2}}{2 a b^{2}}+\frac{z^{3}}{6 a^{2} b^{3}}+\frac{z^{4}}{24^{3} b^{4}}+1-\frac{z^{5}}{96 a^{4} b^{5}}$, Ec. And moreover, if the Ordinate \dot{z} were required, divide $a b$ by $a-1-x$, that is by $a \div \frac{z}{b}$ $+\frac{z^{2}}{2 a b^{2}}+\frac{z^{3}}{6 a^{2} b^{3}}, E_{C} c$. and there will arife $\dot{z}=b$ -$\frac{z}{2}-\frac{z^{2}}{2 a^{2} b}-\frac{z^{3}}{6 a^{3} b^{2}}-\frac{z^{4}}{24^{44 b^{3}}}, \varepsilon^{3} c$.

164 Of the Metbod of FLuxians

Thus in the Ellypfis which is expreffed by the Equation $a x-\frac{a}{c} x x=z \dot{z}$, after the Area $z=\frac{2}{3} a^{\frac{1}{2}} x^{\frac{3}{2}}$
$-\frac{a^{\frac{1}{2}} x^{\frac{1}{3}}}{5 c}-\frac{a^{\frac{1}{2}} x^{\frac{2}{2}}}{28 c^{2}}-\frac{a^{\frac{1}{2}} x^{\frac{2}{2}}}{72 c^{3}}, \xi^{2} c$. is found, write v^{3} : for $\frac{3 \pi}{2 a^{\frac{1}{2}}}$, and t for $x^{\frac{x}{2}}$, and it will be $v^{3}=t^{3}-\frac{3 t 5}{106}$ $-\frac{3 t^{7}}{56 c^{2}}-\frac{t 9}{48 c^{3}}, \delta c$. and extracting the root, $t=v$ $+\frac{v^{3}}{10 c}+\frac{81 v^{5}}{1400 c^{2}}+\frac{1171 v^{7}}{25200 c^{3}}, \vartheta^{2} c$. whofe fquare $v^{2}+$ $\frac{v^{4}}{5^{c}}+\frac{22 \tau^{6}}{175 c^{2}}+\frac{823 \tau^{8}}{7875^{3}}, \varepsilon^{3} c .=x$; this value being fubftituted inftead of x in the equation $x x-\frac{a}{c} x x=\ddot{z} z$, and the root being extracted, there arifes $\dot{z}=a^{\frac{1}{2}} v$ $\frac{2 a^{\frac{1}{2}} v^{3}}{5 c}-\frac{38 a^{\frac{x}{2}} v^{5}}{175 c^{2}}-\frac{407 a^{\frac{x}{2}} v^{7}}{2250 c^{3}}$, $v^{2} c$. So that from
 Abfcifs x will be given, and the Ordinate \dot{z}. All which things may be accommodated to the Hy perbola, if only the fign of the quantity c be changed, wherever it is found of odd dimenfions.

Problem X.

To find as many Curves as we pleafe, robofe Lengths may be exprefled by Finite Equations.

The following Pofitions prepare the way for the Solution of this Problem.

1. If the Right Line DC, ftanding perpendicularly upon any Curve AD, be conceived thus to move, all its points $G, g, r, \xi^{\circ} c$. will defcribe other other Curves which are equi-diftant and perpendicular to that Line: as $\mathrm{GK}, g k, \quad$ rs, $\mathcal{E}^{\circ} c$.
2. If that right line
 be continued indefinitely each way, its extremities will move contrary ways; and therefore there will be a point between, which will have no motion, but may therefore be called the Center of motion. This point will be the fame as the center of curvature, which the Curve AD hath at the point D; as is mentioned before. Let that Point be C. 3. If we fuppofe the line $A D$ not to be circular, but inequably curved; fuppofe more curved towards δ, and lefs towards Δ; that Center will continually change its place, approaching nearer to the parts more curved as in K , and going farther off at the parts lefs curved, as in k; and by that means will defrribe fome line as K C k.
3. The right line DC will continually touch the line defrribed by the center of curvature. For if the point D of this line moves towards δ, its point G, which in the mean time paffes to K , and is fituate on the fame fide of the center C , will move the fa me way by the fecond pofition. Again, if the fame point \mathbf{D} moves towards Δ, the point g, which in the mean time paffes to k. and is fituate on the contrary fide of the center C , will move the contrary way;
that is, the fame way that G moved in the former Cafe while it paffed to K ; wherefore K and k lie on the fame fide of the right line DC ; but as K and k are taken indefinitely for any points, it's plain that the whole Curve lies on the fame fide of the right line DC, and therefore is not cut but only touched by it.
Here it is fuppofed that the line $\delta \mathrm{D} \Delta$ is continually more curved towards δ, and lefs towards Δ; for if its greateft or leaft curvature is in D , then the right line DC will cut the curve KC, but yet in an angle that is lefs than any right-lined angle, which is she fame thing as if it were faid to touch it; Nay the point C in this cafe is the limit or Cufpid, at which the Two parts of the Curve, finifhing in the moft oblique concourfe, touch each other; and therefore may more juftly be faid to be touched, than to be cut, by the right line DC , which divides that angle of contact.
4. The right line CG is equal to the Curve CK. For conceive all the points $r, 2 r, 3 r, 4 r, \varepsilon^{2} c$. of that line to defcribe the arches of Curves $r s$, $2 r 2 s, 3 r 3 s, \varepsilon^{3} c$. in the mean time that they approach to the Curve CK by the motion of that right line; and fince thefe arches (by the firft pofition,) are perpendicular to the right lines that touch the CurveCK, (by the $4^{\text {th }}$ pofition, it follows that they will be alfo perpendicular to that Curve. Wherefore the parts of the line CK intercepted between thefe arches, which by reafon of their infinite fhortnefs may be confidered as right lines, are equal to fo many parts of the right line CG, and equals being added to equals the whole line CK will be equal to the whole line CG.

This would likewife appear by conceiving that every part of the right line $C G$, as it moves along, will apply itfelf fucceffively to every part of the Curve CK; and thereby will mea-
fore thole parts; jut as the circumference of a Wheel, while it moves forwards by revolving up. on a plain, will meafure the diftance that the point: of contact continually defcribes.
And hence it appears, that the Problem may be refolved, by affuming any Curve at pleafure $\mathrm{A} D \Delta$ and thence by determining the other Curve KCk , in which the center of curvature of the affumed Curve is always found. Therefore letting fall the Perpendiculars DB and CL to a right line $A B$ given in position, and in $A B$ taking any point A , and calling $\mathrm{AB}=x$ and $\mathrm{BD}=y$; to define the Curve AD let any relation be affumed between x. and y, and then by Prob. V. the point C may be found; by which may be determined both the Curve KC, and its length GC.

Ex. Let $a x=y y$ be the equation to the Curve; which therefore will be the Appollonian Parabola. By

Prob, V. will be found $\mathrm{AL}=\frac{1}{3} a+3 x, \mathrm{CL}=\frac{4 y 3}{c a}$,
and
and $\mathrm{DC}=\frac{a+4 x}{a} \sqrt{\frac{1}{4} a x+a x}$; which being obtained, the Curve KC is determined by AL and LC, and its Length by DC. For as we are at liberty to affume the points K and C any where in the Curve KC , let us fuppofe K to be the center of curvature of the Parabola at its vertex ; putting therefore $A B$ and $B D$, or x and y, to be nothing, it will be $\mathrm{DC}=\frac{1}{2} a$, and this is the Length AK or DG , which being fubtracted from the former indefinite value of DC , leaves GC or $\mathrm{KC}=\frac{a+4 x}{a} \sqrt{\frac{2}{4} a a+a x}$
$-\frac{1}{2} a$.
Now if you defire to know what Curve that is, and what is its Length, without any relation to the Parabola, call $K L=z$, and $L C=v$, then it will be $z=A L-\frac{1}{2} a=3 x$; or $\frac{1}{3} z=x$, and $\frac{a z}{3}=a x$ $=y y$, therefore $4 \sqrt{ } \frac{z^{3}}{27 a}=\frac{4 y^{3}}{a a}=\mathrm{CL}=v$; or $\frac{16 z^{3}}{27 a}=v^{2}$, which Thews the Curve KC to be a Parabola of the fecond Kind. And for its Length there arifes $\frac{3 a+4 z}{3 a} \sqrt{\frac{1}{4} a a+\frac{1}{3} a z}-\frac{1}{2} a$ by writing $\frac{1}{3} z$ for x in the value of CG .

The Problem may be refolved by taking any equation which will exprefs the relation between $A P$ and PD, fuppofing P to be the interfection of the Abrcifs and Perpendicular. For calling AP $=x$ and $\mathrm{PD}=y$, conceive CPD to move an infinitely fmall fpace, fuppofe to the place $\mathrm{C} p d$; and in CD and $\mathrm{C} d$ taking $\mathrm{C} \Delta$ and $\mathrm{C} \delta$ both of the fame given length, fuppore equal to 1 ; and to CL let fall the Perpendiculars Δg and $\delta \gamma$, of which Δg (which call $=z$) may meet $\mathrm{C} d$ in f; then compleat the Parallelogram $g \gamma \delta e$, and making \dot{x}, \dot{y}, and \dot{z}, the Fluxions of the quantities x, y, and z, as before;

and Infinite Series.

And $\Delta f: P P:: C \Delta: C P$. Then ex aqua $\Delta e: P P$
$\therefore \frac{\overline{\bar{c}^{2}}}{\mathrm{CA}}: \mathrm{CP}$. But P_{p} is the moment of the Ab firs

AP, by the acceflion of which it becomes Ap; and Δe is the contemporaneous moment of the Perpendicular Δg, by the decreafe of which it becomes $\delta \gamma$; therefore Δe and $\mathrm{P}_{\mathcal{p}}$, are as the Fluxions of the lines $\Delta g(z)$ and $A P(x)$; that is, as \dot{z} and \dot{x}. Wherefore $\dot{z}: \dot{x}:: \frac{\overline{\mathrm{Cg}}^{2}}{\mathrm{C} \Delta}: \mathrm{CP}$. And fence it is $\overline{\mathrm{CG}}^{2}$, $=\overline{\mathrm{C}}^{2}-\overline{\Delta g}^{2}=1-z z$; and $\mathrm{C} \Delta=\mathrm{I}$; it will be $\mathrm{CP}=$ $\frac{\dot{x}-\dot{x} z^{2}}{z}$. Moreover fine we may affume any one of the Three $\dot{x}, \dot{y}, \dot{z}$, for an uniform Fluxion to which the reft may be referred; if \dot{x} be that Fluxion, and its value be unity; then $\mathrm{CP}=\frac{1-z z}{\dot{z}}$.

Befides it is $\mathrm{C} \Delta(1): \Delta \mathrm{g}(z):: \mathrm{CP}: \mathrm{PL} ;$ alfo $\mathbf{C \Delta}(\mathrm{I}): \mathrm{Cg}(\sqrt{1-z z}):: \mathrm{CP}: \mathrm{CL}$. Therefore it
is $\mathrm{PL}=\frac{z-z^{3}}{\dot{z}}$; and $C L=\frac{1-z z}{\dot{z}} \sqrt{1-z z}$. Laftly, drawing $p q$ parallel to the infinitely fmall arch $\mathrm{D} d$, or perpendicular to DC, Pq will be the momentum of DP by the acceffion of which it becomes $d p$, at the fame time that AP becomes Ap. Therefore $\mathrm{P} p$ and Pq are as the Fluxions of $\mathrm{AP}(x)$ and $\mathrm{PD}(y)$; that is, as 1 to $y=z$. Whence we have this folution of the Problem.

From the propofed equation which expreffes the relation between x and y find the relation of the Fluxions \dot{x} and \dot{y} by Prob. I. and putting \dot{x} $=1$, there will be had the value of y, to which z is equal. Then fubftitute z for \dot{y}, and by the help of the laft equation find the relation of the Fluxions \dot{x}, \dot{y}, and \dot{z}, by Рrob. I. and again fubftituting I for \dot{x}, there will be had the value of \dot{z}, Thefe being found make $\frac{1-y y}{\dot{z}}=\mathrm{CP}, z \times \mathrm{CP}=\mathrm{PL}$, and $C P \sqrt{1-y y}=C L$, and C will be a point in the Curve; any part of which KC is equal to a right line $C G$, which is the difference of the Tangents drawn perpendicularly to $\mathrm{D} d$ from C and K .

Example. Let $x x=y y$, be the equation which expreffes the relation between AP and PD; and by Prob. I. it will be firft $a \dot{x}=2 y \dot{y}$, or $a=2 y z$: Then $0=2 y z+2 y z$, or $\frac{-z z}{y}=\dot{z}$. Thence it is CP $=\frac{\dot{r}-\ddot{y y}}{\dot{z}}=y-\frac{4 y^{3}}{a a}, \mathrm{PL}=z \times \mathrm{CP}=\frac{x}{2} a-\frac{2 y y}{a}$, and $C L=\frac{a a-4 y y}{2 a a} \sqrt{4 y y-a a}$. And from CP and PL taking away y and x, there remains $C D=-\frac{4 y^{3}}{a a}$ and $A L=$

and Infinite Series.

$\frac{1}{2} a-\frac{3 y}{a}$. Now I take away y and x, becaufe winn CP and PL have affirmative values, they fall on the fide of the point P towards D and A, and they ought to be diminifhed by taking away the affirmative quantities PD and AP ; but when they have negative values, they will fall on the contrary fide of the point P , and they mult be increafed, which is alfo done by taking away the affirmative quantities PD and AP .
Now to know the length of the Curve in which the point C is found between any two of its points K and C ; we mult feek the lengths of the Tangent at the point K and fubtract it from CD . As if K were the point at which the Tangent is terminated, when $C \Delta$ and Δg or I and z are made equal, which therefore is fituated in the Abrcifs itfelf AP; write I for z in the equation $a=2 y z$, whence $a=2 y$. Therefore for y write $\frac{1}{2} a$ in the value of $C D$ that is in $\frac{-44^{3}}{a a}$, and it comes out $-\frac{1}{2} \sigma$; and this is the length of the Tangent at the poine K , or of DG ; the difference between which and the foregoing indefinite value of CD is $\frac{43^{3}}{a a}$ $\frac{1}{2} a$, that is GC, to which the part of the Curve KC is equal.

Now that it may appear what Curve that is, from AL (having firft changed its fign, that it may become affirmative) take AK, which will be $\frac{x}{4} a$, and there will remain $\mathrm{KL} \Rightarrow \frac{3 y y}{a}-\frac{3}{4} a$, which call t; and in the value of the line CL, which call v write $\frac{4 a t}{3}$, for $4 y y-a a$; and there will arife $\frac{2 t}{3 a} \sqrt{\frac{4}{3}} a t=v$ or $\frac{16 t^{3}}{27 a}=v \nu$, which is an equation to a arabola of the fecond Kind; as was found befure.

When the relation between t and v cannot conveniently be reduced to an equation, it may be fufficient only to find the length PC and PL. As if for the relation between AP and PD the equation $3^{2} x+3 a^{3} y-y^{3}=0$ were affumed. From hence, by Prob. I. firft there arifes $a^{2}+a^{2} z-y^{2} z=0$, then $a a \dot{z}-2 y \dot{y} z-y^{2} \dot{z}=0$, and therefore it is $z=$ $\frac{a a}{j y-a a}, \dot{y}$ and $\dot{z}=\frac{2 y j z}{a a-y y}$. Whence are given $\mathrm{PC}=$ $\frac{1-y y}{\dot{z}}$, and $\mathrm{PL}=z \times \mathrm{PC}$; by which the point C is determined, which is in the Curve. And the length of the Curve, between Two fuch points, will be known, by the difference of the Two correfponding Tangents DC or PC-y.

For Example. If we make $a=1$, and in order to determine fome point of the Curve C, we take y $=2$; then AP or x becomes $\frac{y^{3}-3 a^{2} y}{3 a a}=\frac{2}{3}, z=\frac{1}{3}$, $\dot{z}=-\frac{4}{5}, \mathrm{PC}=-2$, and $\mathrm{PL}=-\frac{2}{3}$. Then to deter mine another point if we take $y=3$; it will be $\mathrm{AP}=6, z=\frac{1}{5}, \dot{z}=-\frac{3}{25}, \mathrm{PC}=-84$, and $\mathrm{PL}=$ $-10^{\frac{1}{2}}$; which being had, if y be taken from PC , there will remain - 4 in the firtt cafe, and - 87 in the fecond, for the length DC; the difference of which 83 is the Length of the Curve between the two points found C and ϵ.

Thefe are to be thus underflood, when the Curve is continued between the two points C and c, or between K and G, without any term or flimit, which we called its Cufpid. For when one or more fuch terms come between thefe points (which terms are found by the determination of the greateft or leaft PC or DC), the Lengths of each of the parts of the Curve between them and the points C or K mutt be feparately found, and then added together.

Problem

Problem XI.

To find as many Curves as you pleafe, wobofe Lengths may be compared with the Length of any Curve proposed, or with the Area applied to a given Line by the belt of Finite Equalions.

It is performed by involving the length or the Area of the propofed Curve in the equation, which is affumed in the foregoing Problem, to determine the relation between AP and PD; [Fig. p. 143.] but that z and \dot{z} may be thence derived by $\mathrm{P}_{\text {rob. }} \mathrm{I}$. the Fluxion of the length or of the Area mut be firft difcovered.

The Fluxion of the Length is difcovered by putting it equal to the fquare root of the fum of the fquares of the Fluxion of the Abfcifs and of the Ordinate. For let RN be the per-

pendicular Ordinate moving upon the Abfcifs MN . And let QR be the propofed Curve, at which RN is terminated. Then calling MN $=s, \mathrm{NR}=t$, and $\mathrm{QR}=v$, and their Fluxions \dot{s}, \dot{t}, and \dot{v}, reflectively; conceive the line NR to move into the place $n r$ infinitely near the formar, and letting fall Rs perpendicularly to nr ;
then $\mathrm{R} s, s r$, and $\mathrm{R} r$, will be the contemporaneous moments of the lines MN , NR , and QR , by the acceffion of which they become $\mathrm{M} n, n r$, and $\mathrm{Q} r$; but as thefe are to each other as the Fluxions of the fame lines, and becaufe of the Rectangle Rsr, it will be $\sqrt{\overline{R_{s}^{2}+5 r^{2}}}=\mathrm{R} r$, or $\sqrt{s^{2}+i^{2}}=\dot{v}$.

But to determine the Fluxions s and i, there are two equations required: One of which is to define the relation hetween MN and NR or s and t, from whence the relation between the Fluxions s and \dot{t} may be derived: And another which may define the relation between MN or NR in the given figure, and of AP or x in that required, from whence the relation of the Fluxion \dot{s} or \dot{b} to the Fluxion \dot{x} or a may be difcovered.

Then \dot{z} being found, the Fluxions \dot{y} and \dot{z} may be fought by a Third affumed Equation, by which the length PD or y may be defined. Then we are to take $P C=\frac{1-y y}{\dot{z}}, P L=j \times P C$, and $D C=P C-y_{0}$ as in the foregoing Problem.

Example I. Let as-ss=tit be an equation to the Curve QR, which will be a Circle; $x x=$ as the relation between the lines AP and MN ; and $\frac{2}{3} v=y$ the relation between the length of the Curve given $Q R$ and the right line PD. By the firft it will be $a s-2 s s=2 t i$ or $\frac{a-2 s}{2 t} s=i$, and thence $\frac{a s}{2 t}$ $=\sqrt{s^{2}+\dot{t}^{2}}=\dot{v}$; by the fecond it is $2 \tilde{x}=a \dot{s}$, and therefore $\frac{x}{t}=\dot{v}$; and by the third $\frac{2}{3} \dot{v}=\dot{y}$, that is, $\frac{2 x}{3 t}=z$, and hence $\frac{2}{3 t}-\frac{2 x t}{.3 t t}=\dot{z}$, which being found, take $\mathrm{PC}=\frac{1-y y}{\approx}, \mathrm{PL}=\dot{z} \times \mathrm{PC}$, and DC
$=\mathrm{PC}-y$, or $\mathrm{PC}-\frac{3}{3} \mathrm{QR}$. Where it appears, that the Length of the given Curve QR cannot be found, but at the fame time the Length of the right Line DC muft be known, and from thence the Length of the Curve in which the point C is found. And vice ver \sqrt{i}.

Ex. 2. The equation as-ss=\| remaining, make $x=5$, and $v v-4 a x=4 a y$; and by the firlt three will be found $\frac{a s}{2 t}=\dot{v}$ as above; but by the fecond $\mathrm{I}=\dot{s}$, and therefore $\frac{a}{2 t}=\dot{v}$, and by the third $2 v \dot{v}-4 a=4 a \dot{j}$ (or eliminating $v) \frac{v}{4 t}-1=z$. And from hence $\frac{v}{4 t}-\frac{v i}{4 t t}=\dot{z}$.

Ex. 3. Let there be fuppofed three equations, $a a=s t, a+3 s=x$, and $x+v=y$. Then by the firft (which denotes an Hyperbola) it is $o=s t+i s$, or $-\frac{s t}{s}=t$, and therefore $\frac{3}{s} \sqrt{s s+t t}=\sqrt{s i+i t}$ $=\dot{v}$; by the fecond it is $3 \dot{s}=\mathrm{r}$, and therefore $\frac{3}{3 s} \sqrt{s s-1 t t}=\dot{v}$; and by the third it is $x+\dot{v}=\dot{y}$, or ${ }^{1+}+\frac{1}{3^{5}} \sqrt{s^{s-1}-t t}=z$. Thence it is $\dot{w}=\dot{z}$, that is, putting \dot{w} for the Fluxion of the radical $\frac{1}{35} \sqrt{s+t t}$, which if it be made equal to w, or $\frac{x}{d}+\frac{\pi t}{9, s}=w w$ there will arife from hence $\frac{2 t i{ }^{2}}{9 s}-\frac{2 t i s}{9^{3}}=2 w e r w$, and firft fubftituting $\frac{-s t}{s}$ for \dot{i}, then $\frac{1}{3}$ for \dot{s}, and dividing by $2 w$, there will arife $\frac{-2 t i}{27 \text { wws }^{3}}=\dot{w}=\dot{z}$. Now \dot{y} and \dot{z} being found, the reft is performed as in the firft example.

Now
${ }^{176}$ Of the Metbod of FLuxions
Now if from any point of a Curve Q a perpendicular QV be let fall on MN , and a Curve is to be found, whofe length may be known from the length which arifes by applying the Area QRNV to any given line ; let that given line be called E , the length $\frac{\text { RRNV }}{\mathrm{E}}$ which is produced by fuch ap. plication be called v, and its Fluxion v; and fince the Fluxion of the Area QRNV is to the Fluxion of the Area or Rectangular Parallelogram made upon VN with the height E, as the Ordinate or moving line $\mathrm{NR}=t$, by which this is defrribed, to the moving line E , by which the other is defrribed in the fame time; and the Fluxions \dot{v} and \dot{j} of the lines v and MN, (or s, or of the lengths which arife by applying thefe areas to the given line E , are in the fame ratio; it will be $\dot{v}=\frac{\dot{s}}{\mathrm{E}}$. Therefore by this rule the value of \dot{v} may be fought, and the reft to be performed as in the examples foregoing.

Ex. 4. Let QR be an Hyperbola which is de= fined by this equation $a a+\frac{a s s}{c}=t t$; thence arifes by Prob. I. $\frac{a s i s}{c}=t i$, or $\frac{a, s}{c t}=i$. Then if for the other two equations are affumed $x=s$, and $y=v$, the firft will give $1=\dot{s}$, whence $\dot{v}=\frac{\dot{s}}{E}=\frac{t}{E}$; and the latter will give $\dot{y}=\dot{v}$, or $z=\frac{t}{\mathrm{E}}$; from hence $\dot{z}=\frac{i}{E}$, and fubftituting $\frac{a, s}{c t}$ or $\frac{a s}{c t}$ for i, it becomes $\dot{z}=\frac{a s}{c E}$. Now \dot{y} and \dot{z} being found, make $\frac{1-y y}{y}=C P$, and $y \times C P=P L$, as before; and thence the
the point C will be determined, and the Curve in which all fuch points are fituated: The length of which Curve will be known from the length DC, which is equivalent to $\mathrm{CP} \sim v$, as is fufficiently fhewn before.
There is alfo another method, by which the Problem may be refolved, and that is by finding Curves whofe Fluxions are either equal to the Fluxion of the propofed Curve, or are compounded of the Fluxions of that and of other lines; and this may fometimes be of ufe in converting Me chanical Curves into equable Geometrical Curves, of which thing there is a remarkable example in Spiral Lines.

Let AB be a right line given in pofition, BD an arch moving upon $A B$ as an $A b f i f f$, and yet retaining A as its center ; ADda Spiral at which that arch is continually terminated, $b d$ an arch indefinitely near it, or the place into which the arch BD by its motion next arrives; DC a perpendicular to the arch $b d, d \mathrm{G}$ the difference of the arches; AH another Curve equal to the Spiral AD; BH a right line moving perpendicularly upon $A B$, and terminated at the Curve AH; bb the next place into which that right line moves; and HK perpendicular to $b b$; and in the infinitely little Triangles $\mathrm{DC} d$ and HK b. fince DC and HK are equal to fome third line $\mathbf{B} b$, and therefore equal to each other; and Ddand $\mathrm{H} b$ (by Hypothefis,) are corref. pondent parts of equal Curves, and therefore equal

178 Of the Metbod of Fuxions
to each other, as alfo the angles at C and K are right angles ; the third fides $d \mathrm{C}$ and $b \mathrm{~K}$ will be equal alfo. Moreover fince it is $\mathrm{AB}: \mathrm{BD}:: \mathrm{A} b$: $b \mathrm{C}:: \mathrm{Ab}-\mathrm{AB}(\mathrm{B} b): b \mathrm{C}-\mathrm{BD}(\mathrm{CG})$; therefore $\mathrm{BD} \times \mathrm{B} 6$ $\frac{A B}{A B}=C G$; if this be taken from $d G$, there will remain $d G-\frac{B D \times B b}{A B}=d \mathrm{C}=h \mathrm{~K}$. Call therefore $\mathrm{AB}=z, \mathrm{BD}=v$, and $\mathrm{BH}=y$, and their Fluxions \dot{z}, \dot{v}, and \dot{y}, refpectively, fince $\mathrm{B} b, d \mathcal{G}, b \mathrm{~K}$, are the contemporaneous moments of the fame, by the acceffion of which they become, $A b, b d$, and $b b$; and therefore are to each other as the Fluxions. Therefore for the moments in the laft equation let the Fluxions be fubftituted as alfo the letters for the lines, and there will arife $\dot{v}-\frac{v z}{z}=\dot{j}$. Now, of thefe Fluxions, if \dot{z} be fuppofed equable, or the unit to which the reft are referred, the equation will be $\dot{v}-\frac{v}{z}=\dot{y}$.

Wherefore the relation between AB and BD , (or between z and v,) being given by any equation, by which the Spiral is defined, by Prob. I. the Fluxion \dot{v} will be given; and thence alfo the Fluxion \dot{y} by putting it equal to $\dot{v}-\frac{v}{z}$; and by Prob. II. this will give the line y, or BH , of $^{\text {a }}$ which it is the Fluxion.

Ex. I. If the equation $\frac{z \tilde{a}}{a}=v$ were given (which is to theSpiral of Arcbimedes) thence (by Prob. I.) $\frac{z z}{a}=\dot{v}$; from this take $\frac{v}{z}$, or $\frac{z}{a}$, and there will remain $\frac{z}{a}=\dot{y}$, and thence by (Prob, II.) $\frac{z z}{2 a}=y$; which fhews the Curve AH, to which the Spiral AD is equal, to be the Parabola of Apollonius,
whofe latus refium is $2 a$, or whofe Ordinate BH is always equal to $\frac{1}{2}$ Arch BD.

Ex. 2. If the Spiral be propofed which is defined by the equation $z^{3}=a v^{2}$, or $v=\frac{z^{\frac{1}{2}}}{a^{\frac{1}{2}}}$; there arifes (by Prob. I.) $\frac{3 z^{\frac{x}{2}}}{2 a^{\frac{x}{2}}}=\dot{v}$, from which if you take $\frac{v}{z}$ or $\frac{z^{\frac{1}{2}}}{a^{\frac{1}{2}}}$, there will remain $\frac{z^{\frac{1}{2}}}{2 a^{\frac{1}{2}}}=\dot{y}$, and thence (by Prob. II.) will be produced $\frac{z^{\frac{3}{2}}}{3 a^{\frac{1}{2}}}=y$; that is $\frac{\pi}{3} \mathrm{BD}=\mathrm{BH}$, AH being a Parabola of the Second Kind.

Ex. 3. If the equation to the Spiral be $z \sqrt{ } \frac{a+z}{c}$ $=v$, then by Рrob. I. $\frac{2 a+3 z}{2 \sqrt{a c+c z}}=\dot{v}$, from which if you take $\frac{v}{z}$ or $\sqrt{ } \frac{a \pm z}{c}$, there will remain $\frac{z}{2 \sqrt{a c+c z}}=\dot{y}$. Now fince the quantity generated by this Fluxion \dot{y} cannot be found by $\mathrm{P}_{\mathrm{rob}}$. II. unlefs it be refolved into an infinite Series; according to the tenor of the Scholium to Prob. IX. I reduce it to the form of the equations in the firft column of the Tables, by fubfticuting z^{n} for z, then is becomes $\frac{z^{2 n-x}}{2 \sqrt{a c+c}+z^{n}}=\dot{y}$, which equation belongs to the fecond fpecies of the fourch Order of the firft Table ; and by comparing the terms it is $d=\frac{\pi}{2}$,

$$
\mathrm{A}_{\mathrm{a}} 2
$$

$c=a c$,

180 Of the Method of FLUXIONS
$c=a c$, and $f=c$, fo that $\frac{z-2 a}{3 c} \sqrt{a c+c z}=t=y$, which equation belongs to a Geometrical Curve AH , that is equal in length to the Spiral AD.

Problem XII.

To determine the Lengtbs of Curves.

In the foregoing Problem we have fhewn that the Fluxion of a Curve Line is equal to the fquare root of the fum of the fquares of the Fluxions of the Abfcifs and of the perpendicular Ordinate. Wherefore if we take the Fluxion of the Abfcifs for an uniform and determinate meafure, or for an Unit, to which the other Fluxions may be referred; and alfo if from the equation which defines the Curve we find the Fluxion of the Ordinate, we fhall have the Fluxion of the Curve Line from whence its Length may be deduced by the fecond Problem.

Example 1. Let the Curve FDH be propofed, which is defined by the equation $\frac{z^{3}}{a a}+\frac{a a}{12 z}=y$;

making the $\mathrm{Abfcifs} A B=z$, and the moving ordinate $\mathrm{DB}=y$; then from the equation will be had, by Рrob. I. $\frac{3 z z}{a a}-\frac{a a}{12 z z}=\dot{y}$, the Fluxion of z being 1 , and \dot{y} being the Fluxion of y; then adding the fquares
fquares of the Fluxions, the fum will be $\frac{9 z^{4}}{a^{4}} \uparrow \frac{1}{2}$ $+\frac{a^{4}}{144^{z 4}}=\ddot{t}$, and extracting the root $\frac{3 z z}{a a}+\frac{a a}{12 z z}$ $=\dot{t}$, and thence by $\mathrm{P}_{\mathrm{rob} \text {. II. }} \frac{z^{3}}{a a}-\frac{a a}{12 z}=t$. Here i ftands for the Fluxion of the Curve, and t for its length.

Therefore if the length $d \mathrm{D}$ of any portion of this Curve were required, from the points d and D , let fall the perpendiculars $d b$ and DB to AB , and in the value of t, fubftitute the quantities $\mathrm{A} b$ and AB feverally for z, and the difference of the refults will be $d \mathrm{D}$ the length required. As if $\mathrm{A} b=\frac{1}{2} a$, and $\mathrm{AB}=a$, writing $\frac{1}{2} a$ for z, it becomes $t=\frac{-a}{24}$; but writing a for z, it becomes $t=\frac{11 a}{12}$; from which, if the firft value be taken, there will remain $\frac{23 a}{24}$ for the length $d \mathrm{D}$: or if only $\mathrm{A} b$ be determined to be $\frac{1}{2} a$, and AB be looked upon as indefinite, there will remain $\frac{z^{3}}{a a}$ $-\frac{a a}{12 z}+\frac{a}{24}$ for the value of $d \mathrm{D}$.

If you would know the portion of the Curve line which is reprefented by t; fuppofe the value of t to be $=0$, and there arifes $z^{4}=\frac{a 4}{12}$, or $z=\frac{a}{\sqrt{12}}$, therefore if you take $\mathrm{A} b=\frac{a}{\sqrt{12}}$, and erect the perpendicular $b d$, the length of the Arch $d \mathrm{D}$ will be t, or $\frac{z^{3}}{a a}-\frac{a a}{12 z}$: And the fame is to be underflood of all Curves in general.

After the fame manner by which we have determined the length of this Curve; if the equation $\frac{z^{4}}{a^{3}}+\frac{a^{3}}{3 z^{2}}=y$ be propofed, for defining the

182 Of the Metbod of FLUXIONS nature of another Curve; there will be deduced $\frac{z^{4}}{a^{3}}-\frac{a^{3}}{3 z z^{2}}=t$. Or if this Equation be propofed $\frac{z^{\frac{3}{2}}}{a^{\frac{1}{2}}}-\frac{x}{3} a^{\frac{x}{2}} z^{\frac{1}{2}}=y$; there will arife $\frac{z^{\frac{3}{2}}}{a^{\frac{1}{2}}}+$ $\frac{1}{3} a^{\frac{1}{2}} z^{\frac{1}{2}}=t$. -Or in general if it be $c z \theta+\frac{z^{2-9}}{4^{4 \theta c}-8 \theta c}$ $=y$; (where θ is ufed for reprefenting any number either integer or fraction;) We fhall have $c z^{9}$ $-\frac{z^{2-9}}{4^{\theta \theta c}-80 c}=t$.

Ex. 2. Let the Curve be propofed, which is defined by this equation $\frac{2 a a+2 z z}{3 a a} \sqrt{a a+z z}=y$; then (by $\mathrm{P}_{\text {ROB. }}$ I.) will be had $y=\frac{4 a 4 z+8 a^{2} z^{3}+4 z^{5}}{3^{a^{4} y}}$; or exterminating $y, \dot{y}=\frac{2 z}{a a} \sqrt{a a+z z}$; to the fquare of which add x, and the fum will be $1+\frac{4 z z}{a a}+$ $\frac{4^{z^{4}}}{a^{4}}$; and its root $\mathrm{I}+\frac{2 z z}{a a}=\dot{i}$: Hence by $\mathrm{P}_{\text {Rob. II. }}$. will be obtained $z+\frac{2 z^{3}}{3 a^{2}}=t$.

Ex. 3. Let a Parabola of the fecond Kind be propofed, whofe equation is $z^{3}=a y^{2}$, or $\frac{z^{\frac{3}{2}}}{a^{\frac{7}{2}}}=y$; thence by Prob. I. is derived $\frac{3 z^{\frac{3}{2}}}{2 a^{\frac{3}{2}}}=\dot{y}$; therefore
$\sqrt{1+\frac{9^{x}}{4 a}}=\sqrt{1+\ddot{y y}}=i$. Now fince the length of the Curve generated by the Fluxion t cannot be found by Prob. II. without a reduction to an infinite
finite feries of fimple terms; I confulc the Tables at Prob. IX. and according to the Scholium belonging to it I have $t=\frac{8 a+188}{27} \sqrt{1}+\frac{9 \varepsilon}{4 a}$.
And thus you may find the Length of thefe Parabolas $z^{5}=a y^{4}, z^{7}=a y^{6}, z^{9}=a y^{8}, \mho^{3} c$.

Ex. 4. Let the Parabola be propofed whofe equation is $z^{4}=a y^{3}$, or $\frac{z^{\frac{4}{3}}}{a^{\frac{4}{3}}}=y$; thence by Prob. $^{\text {I. }}$ will arife $\frac{48^{\frac{1}{3}}}{3 a^{\frac{1}{3}}}=y$; therefore $\sqrt{1}+\frac{16 z^{\frac{2}{3}}}{9 a^{\frac{2}{3}}}=\sqrt{y y+1}$
$=i$. This being found I confult the Tables according to the aforefaid Scholium, and by comparing with the fecond Theorem of the Fifth Order of the latter Table, I have $z^{\frac{1}{3}}=x, \sqrt{1}+\frac{16 x x}{9 a^{\frac{2}{3}}}=v$, and $\frac{3}{2}=t$. Where x denotes the Abfiif, y the Ordinate, s the Area of the Hyperbola, and t the length which arifes by applying the Area $\frac{3}{2} s$ to Linear Unity.

After the fame manner the lengths of the Parabolas $z^{6}=a y^{5}, z^{3}=a y^{7}, z^{10}=a y^{9}$, $\}^{6}$ c. may alfo be reduced to the area of the Hyperbola.

Ex. 5. Let the Ciffoid of the Antients be propofed, whofe equation is $\frac{a a-2 a z+z z}{\sqrt{a z-z z}}=y$; thence (by Prob. I.) $\frac{-a-2 z}{2 z z} \sqrt{a z-z z}=y$; and therefore $\frac{a}{2 z} \sqrt{\frac{a+3 z}{z}}=\sqrt{y j+1}=i$; which, by writing $z n$ for $\frac{1}{z}$ or z^{-1}, becomes $\frac{a}{2 z} \sqrt{a z^{n}+3}=i$; an equation of the firt fpecies of the third Order of the Latter Table

Table. Then comparing the terms it is $\frac{a}{2}=d$,

 $3=e$, and $a=f$; fo that $z=\frac{1}{z^{n}}=x^{2}, \sqrt{a+3 x x}=v$, and $6 s-\frac{2 v^{3}}{x}=\frac{4 d e}{v f}$ into $\frac{v^{3}}{2 e x}-s=t$: and taking a for unity, by the multiplication or divifion of which, thefe quantities may be reduced to a juft number of dimenfions, it becomes $a z=x x, \sqrt{a a+3 x x}=v$, and $\frac{6 s}{a}-\frac{2 v^{3}}{a x}=t$. Which are thus conftructed.The Ciffoid being VD, AV the diameter of the circle to which it is adapted, AF its afymptote,

and DB perpendicular to AV cutting the Curve in D ; with the femi-axis $\mathrm{AF}=\mathrm{AV}$, and the femiparameter $A G=\frac{x}{3} A V$, let the Hyperbola FkK be defcribed; and between $A B$ and $A V$ take $A C$ a mean porportional, at C and V let the perpendiculars $\mathrm{C} k$ and VK be erected cutting the Hyperbola in k and K , and let the right lines $k t$ and KT be drawn, touching the fame in thofe points and meeting $A V$ in t and T; and at $A V$ let the rect-

and Infinite Series.

rectangle AVNM be defer ibed equal to the fpace TKkt. Then the length of the Cifioid VD will be the fextuple of the altitude VN.
Ex. 6. Suppofing Ad to be an Ellypfis, which the equation $\sqrt{a z-z z z}=y$ reprefents ; let the Mechanichal Curve AD be propofed of fuch a nature, thatif $D d$ or y be produced, till it meers
 this Curve at D , let BD be equal to the Elliptical arch Ad. Now that the length of this may be determined, the equation $\sqrt{a z-2 z z}=y$, will give $\frac{a-4 z}{2 \sqrt{a z-2 z z}}=y$, to the fquare of which if I be added, there arifes $\frac{a a-4 a z+8 z z}{4 a z-8 z z}$, the fquare of the Fluxion of the arch Ad ; to which if I be added again, there will arife $\frac{a z}{4 a z-8 z z}$, whofe fquare root $\frac{a}{2 \sqrt{a z-2 z}}$ is the Fluxion of the Curve Line AD. Where if z be extracted out of the radical, and for z^{-1} be written $z^{\prime \prime}$, there will be had $\frac{a}{2 z \sqrt{a z_{n}-2}}$, a Fluxion of the firt fpecies of the fourch Order of the latter Table: therefore the terms being collated there will arife $d=\frac{1}{2} a$, $e=-2$, and $f=a$; fo that $z=\frac{1}{z n}=x, \sqrt{a x-2 x x}$ $=v$, and $\frac{8 s}{a}-\frac{4 * v}{a}+v=\frac{8 d e}{v f}$ into $s-\frac{r}{2} x v-\frac{f v}{4 e}$ $=1$.
The Conftruction of which is thus. That the right line $d \mathrm{C}$ being drawn to the center of the Etlipfis, a Parallelogram be made upon $A C=$ Sector $\mathrm{AC} d$; then twice its height will be the length of the Curve AD.

Ex. 7. Making $A \beta=\varphi,[$ Fig. r.] and as being an Hyperbola, whole equation is $\sqrt{-a+b \varphi p}$

$=\beta \delta$, and its Tangent δT being drawn; let the Curve VdD be propored, whofe Ablcifs is $\frac{1}{\varphi \phi}$; and its perpendicular ordinate is the length $B D$, which arifes by applying the area oo $\mathrm{T} \alpha$ to Linear Unity. Now that VD the length of this may be determined, feek the Fluxion of the Area $\alpha \delta \mathrm{T} \alpha$ when $A B$ flows uniformly, and you will find this to be $\frac{a}{4^{b z}} \sqrt{b-a z}$, putting $A B=z$, and its Fluxion unity. For it is $A T=\frac{a}{b \phi}=\frac{a}{b} \sqrt{ } z$, and its Fluxion is $\frac{a}{2 b \sqrt{z}}$, whore half drawn into the altitude $\beta \delta$ or $\sqrt{-a+\frac{b}{z}}$ is the Fluxion of the Area $\alpha \delta T$ defcribed by the Tangent δT; therefore that Flux= jon is $\frac{a}{4 b z} \sqrt{6-a z}$; and this applied to unity be. comes the Fluxion of the Ordinate BD; to the fquare of this $\frac{a a b-a 3 z}{10 b^{2} z^{2}}$ add I the fquare of the Fluxion BD , and there arifes $\frac{a a b-a a^{3} z+16 b^{2} z^{2}}{16 b^{2} z^{2}}$, whofe root $\frac{1}{4^{b z}}$ $\sqrt{a^{2} b-a^{3} x+16 b^{2} x^{2}}$ is the Fluxion of the Curve VD. But this is a Fluxion of the firft fpecies of the feventh Order of the latter Table; and the terms being collated, there will be $\frac{1}{4^{b}}=d, a a b=e$, $-a^{3}=f, 16 b^{2}=g$; and therefore $z=x$. and $\sqrt{a^{2} b-a^{3} x+16 b^{2} x^{2}}=v$, (an equation to one Conick Section; fuppofe HG [Fig. 2.] whofe area EFGH is s where $\mathrm{EF}=x$, and $\mathrm{FG}=v$,) alfo $\frac{1}{z}=\xi$, and $\sqrt{1660-a a^{3}+a b \xi^{2}}=\Upsilon$, (an equation to another Conick Section; fuppofe ML [Fig. 3.] whofe area IKLM is σ, where $\mathrm{IK}=\xi$, and $\mathrm{KL}=\Upsilon$.) Laftly $2 a a b \xi Y-a 3 b r-a 4 q-4 a a b b \sigma-32 a b b s$

$$
\frac{-4 b-44}{64 b^{6+-a t}}=t
$$

Wherefore that the length of any portion Dd of the Curve VD may be known, let $d b$ be perpendicular to AB , and make $\mathrm{A} b=z$; thence by what is now found feek the value of t; then make $\mathrm{AB}=z$, and thence alfo feek for t; and the diffeence of thefe two Values of t will be the length Dd required.
Ex. 8. Let the Hyperbota be propofed, whofe
 be had $\dot{y}=\frac{b z}{y}$, or $\frac{b z}{\sqrt{a++b z z}}$; , the fquare of this add 1 , and the root of the fum will be $j \frac{a a+b z z+b b z z}{a a+b z z}=i$. Now as this Fluxion is not to be found in the Tables, I reduce it to an infinite feries: And firt by divifion it becomes $i=$ $\sqrt{r+\frac{b^{2}}{b_{-}^{2}} z^{2}-\frac{b_{3}^{3}}{a^{4}} z^{4}+\frac{b_{4}}{a^{6}} z^{6}-\frac{b_{5}}{a^{8}} z^{3}, \quad 8 c \text {. and }}$ extracting

188 Of the Metbod of Fluxions

 extracting the root, $i=1+\frac{b^{2}}{2 a^{2}} z^{2}-\frac{4 b^{3}+64}{8 a^{4}} z^{4}+$ $\frac{s b+44^{b}+b^{6}}{16 a^{\circ}} z^{6}, \mathcal{E}^{2} c$. And hence (by Prob. II.) may be had the length of the Hyperbolical Arch, or $t=z \frac{1}{1} \frac{b^{2}}{6 a^{2}} z^{3}-\frac{4 b^{3}+b_{4}}{40 a^{4}} z^{5}+\frac{8 b 4-4 b^{5}+b^{6}}{112 a^{6}} z^{7}$, Erc.If the Ellipfis $\sqrt{a a-b z z}=y$ were propofed; the fign of b ought to be every where changed, and there will be had $z+\frac{b^{2}}{6 a^{2}} z^{3}+\frac{4 b 3-b 4}{40 a^{4}} z^{5}+\frac{8 b a-4 b 5+b^{6}}{112 a^{6}} z^{7}$, Efc. for the length of its Arch ; and likewife putting unity for b, it will be $z+\frac{z^{3}}{6 a^{2}}+\frac{3 z^{5}}{40 a^{4}}+$ $\frac{527}{112 a^{6}}, 8 c$. for the length of the circular Arch. Now the Numeral Co-efficients of this feries may be found ad infinitum, by multiplying continually the terms of this Progreffion $\frac{1 \times 1}{2 \times 3}, \frac{3 \times 3}{4 \times 5}, \frac{5 \times 5}{6 \times 7}, \frac{7 \times 7}{8 \times 9}$, $\frac{9 \times 9}{10 \times 11}$, E' $^{2} c$.

Ex. 9. Laftly let the Quadratrix VDE be propofed whofe vertex is V, A being the center,

and AV the femi-diameter of the interior circle, to which it is adapted, and the angle VAE being a right angle. Now any right line AKD being drawn
drawn through A , cutting the circle in K , and the Quadratrix in D ; and the perpendiculars KG , DB , being let fall to AE , call $\mathrm{AV}=a, \mathrm{AG}=z$, $\mathrm{VK}=x$, and $\mathrm{BD}=y$, and it will be as in the foregoing example $x=z+\frac{z^{3}}{6 a^{2}}+\frac{3 z^{5}}{40 a^{4}}+\frac{5 z^{7}}{112 a^{6}}, \quad \xi^{2} c$. Extract the root z, and there will arife $z=x-$ $\frac{x^{3}}{6 a^{2}}+\frac{x^{5}}{120 a^{4}}-\frac{x^{7}}{5040 a^{5}}, E^{2} c$. whore fquare fubtract from $\overline{\mathrm{AK}}^{2}$ or a^{2}; and the root of the remainder $a-\frac{x^{2}}{2 a}+\frac{x^{4}}{24 a^{3}}-\frac{x^{8}}{720 a^{5}}$, Etc. will be GK. Now whereas by the nature of che Quadratrix it is $A B$ $=\mathrm{VK}=x$; and fince it is $\mathrm{AG}: \mathrm{GK}:: \mathrm{AB}: \mathrm{BD}(y)$; divide $A B \times G K$ by $A G$, and there will arife $y=a-\frac{2 x}{3 a}-\frac{x^{4}}{45^{3}}-\frac{2 x^{6}}{945^{5}}$ Ec. And thence by Prob. I. $y=-\frac{2 x}{3 a}-\frac{4 x^{3}}{45^{3}}-\frac{4 x^{5}}{35 a^{5}}, \delta^{2} c$. to the fquare of which add I, and the root of the fum will be $\mathrm{I}+\frac{2 x x}{9 a^{2}}-\frac{14 x^{5}}{405^{4}}+\frac{604 x^{6}}{127575 a^{6}}, \delta^{3} C=t$ whence (by $\mathrm{P}_{\text {Rob. }}$. 1.) t may be obtained, or the arch of the Quadratrix, viz. $\mathrm{VD}=x=\frac{2 x^{3}}{27 \dot{a}^{2}}+\frac{14 x^{5}}{2825 a^{4}} f$ $\frac{604 \times 7}{893025 a^{6}}, \mathcal{E}^{c} c$.

$F \quad I \quad N \perp S$

$E R R A T A$.

\mathbf{P} AGE 2, line 18 , infiead of decuple, road decimal e
Page 40 , line 9 , inflead of $\frac{\dot{y}}{\dot{x}}$ read $\frac{\dot{x}}{\dot{y}}$.
Page 43, line 3, inftead of any aggregate, read an aggregate: Page 94, line 3, after (AD), insert : $: k \mathrm{~K}: d e=j 0$, where I affume $=1$ as above. Alfo CG: GF.
Page 101, line 10 , dele BD .
Page 113, line 17, inftead of AFD, read FDH.
Page 114, line 6, after $y=$, read $-\frac{c^{3}}{z^{3}} \sqrt{a z-c 6}$.
Page t40, begin the paragraph numb. 3. thus. The Series of every Order, except the fecond of the first Table, may be produced in infinitum. For in the Series of the third and fourth Order of the fire Table the numeral Coefficients of the initial terms are formed by multiplying the numbers $2,-4,16$, $-96,768, \varepsilon^{2} c$. continually into each other; and the coefficieats of the fubfequent terms are derived from the initials in the third Order by multiplying gradually by $-\frac{3}{2},-\frac{5}{4},-\frac{7}{6}$, Etc. or in the fourth Order by multiplying by $-\frac{1}{2},-\frac{3}{4}$, $-\frac{5}{6}$. But the Coefficients of the denominators $\mathbf{x}, 3,15,105$, $E^{\circ} c$. arife by multiplying the numbers $1,3,5,7, \mathcal{E}^{2} c$. gradually into each other.
Page 140, line 3 from the bottom, inftead of fourth Order, read frt Order.
Page 141, line 12, inftead of the Series of the laid fifth Order, read the Series of the third Order of the latter Table.
Page 173, line 10, instead of gag. 143. read jag. 169.
(ancen

$$
\text { by } 1287869
$$

[^0]: * He means the famous Binomial Theorem, fince well known.

[^1]: * Vid. Preface to His View of Sir IJaac Newtan's Philofophy.

